视觉SLAM常见面试题 (上)

本文详细介绍了视觉SLAM中的关键概念,包括特征点法、直接法和光流法的优缺点,以及单目、双目和RGB-D相机的选择。此外,还讨论了关键帧的作用、SLAM中李群李代数的应用,以及回环检测和绑架问题。同时涵盖了相机初始化、三角测量稳定性、尺寸漂移解决方案、RANSAC与鲁棒核函数的区别,以及SLAM后端的滤波与非线性优化方法。
摘要由CSDN通过智能技术生成

1、 视觉SLAM方法一般分为 特征点法、直接法、和光流法,简述概念,及优缺点。
特征点法

——根据提取和匹配特征点来估计相机运动,优化的是重投影误差,对光照变化不敏感,是比较成熟的方案。常见的开源方案:ORB_SLAM
优点:
① 特征点本身对光照、运动、旋转比较不敏感,所以较稳定
② 相机运动较快(相对直接法来说)也能跟踪成功,鲁棒性较好
③ 研究时间较久,方案较成熟
缺点:
① 关键点提取、描述子计算、特征点匹配耗时长
② 特征点丢失场景无法使用
③ 只能构建稀疏地图
④ 只使用特征点,丢弃大量可能有用的信息

直接法

——根据相机的亮度信息估计相机运动,可以不需要计算关键点和描述子,优化的是光度误差,根据使用像素数量可以分为稀疏、半稠密、稠密。常见的开源方案:SVO、LSD_SLAM
优点:
① 速度快,可以省去特征点提取、计算、匹配时间
② 只要图像有深度即可
③ 可以用在特征缺失的场合,比如白墙(特征点法在该情况下会急速变差)
④ 可以构建稀疏、半稠密、稠密地图
缺点:
① 灰度不变假设,易受光照影响
② 要求相机运动较慢,或相机采样频率较高(可以用图像金字塔改善)
③ 单个像素或像素块区分度不强,采用的是数量代替质量的策略

光流法

——用光流跟踪代替描述子计算和特征点匹配,估计相机运动。
优点:
① 不需要计算描述子和匹配特征点
② 只会特征跟丢,很少会误匹配
缺点
① LK光流的结果依赖于图像梯度,局部梯度不能预测长期图像走向 (可以用多层光流来解决)
② 图像边界的点,光流不好追踪 (直接法弥补了这个缺点)
③ 灰度不变假设,易受光照影响

2、 视觉SLAM常用相机包括:单目,双目,RGB-D相机,简述优缺点、常用的相机型号?
单目

——种类多
优点
① 应用广,成本低
② 体积小,标定简单,硬件搭建简单
③ 可用于室内、外 (适当光照下)
缺点
① 纯视觉传感器通病:光照变化较大、纹理特征缺失、快速运动导致模糊的情况下无法使用
② 尺度不确定性,需要专门初始化
③ 必须通过运动估计深度 (帧间匹配三角化)

双目

——ZED、小觅、Indemind
优点
① 相比单目,静止时能根据左右相机视差计算深度
② 基线距离越大,测量距离越远
③ 可用于室内、外 (适当光照下)
缺点
④ 纯视觉传感器通病:光照变化较大、纹理特征缺失、快速运动导致模糊的情况下无法使用
① 双目标定计算复杂
② 用视差计算深度比较耗资源</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值