第一章 行列式

行列式是线性代数中常用的工具。本章主要介绍 n n n阶行列式的定义、性质及其计算方法。——线性代数同济版

  本章主要介绍了行列式的相关计算方法。

部分常用行列式展开

  1. D = ∣ 0 0 ⋯ a 1 n 0 ⋯ a 2 , n − 1 a 2 n ⋮ ⋮ ⋮ a n 1 ⋯ a n , n − 1 a n n ∣ = ( − 1 ) 1 2 n ( n − 1 ) a 1 n a 2 , n − 1 ⋯ a n 1 ; D=\begin{vmatrix}0&0&\cdots&a_{1n}\\0&\cdots&a_{2,n-1}&a_{2n}\\\vdots&&\vdots&\vdots\\a_{n1}&\cdots&a_{n,n-1}&a_{nn}\end{vmatrix}=(-1)^{\frac{1}{2}n(n-1)}a_{1n}a_{2,n-1}\cdots a_{n1}; D=00an10a2,n1an,n1a1na2nann=(1)21n(n1)a1na2,n1an1;
  2. D = ∣ a b b b b a b b b b a b b b b a ∣ = ( a + b ) ( a − b ) 3 ; D=\begin{vmatrix}a&b&b&b\\b&a&b&b\\b&b&a&b\\b&b&b&a\end{vmatrix}=(a+b)(a-b)^3; D=abbbbabbbbabbbba=(a+b)(ab)3;
  3. D = ∣ a b c d a a + b a + b + c a + b + c + d a 2 a + b 3 a + 2 b + c 4 a + 3 b + 2 c + d a 3 a + b 6 a + 3 b + c 10 a + 6 b + 3 c + d ∣ = a 4 ; D=\begin{vmatrix}a&b&c&d\\a&a+b&a+b+c&a+b+c+d\\a&2a+b&3a+2b+c&4a+3b+2c+d\\a&3a+b&6a+3b+c&10a+6b+3c+d\end{vmatrix}=a^4; D=aaaaba+b2a+b3a+bca+b+c3a+2b+c6a+3b+cda+b+c+d4a+3b+2c+d10a+6b+3c+d=a4;
  4. D 2 n = ∣ a 0 ⋯ ⋯ 0 b 0 a ⋯ ⋯ b 0 ⋮ ⋮ 0 ⋯ a b ⋯ 0 0 ⋯ c d ⋯ 0 ⋮ ⋮ 0 c ⋯ ⋯ d 0 c 0 ⋯ ⋯ 0 d ∣ = ( a d − b c ) n ; D_{2n}=\begin{vmatrix}a&0&\cdots&\cdots&0&b\\0&a&\cdots&\cdots&b&0\\\vdots&&&&&\vdots\\0&\cdots&a&b&\cdots&0\\0&\cdots&c&d&\cdots&0\\\vdots&&&&&\vdots\\0&c&\cdots&\cdots&d&0\\c&0&\cdots&\cdots&0&d\\\end{vmatrix}=(ad-bc)^n; D2n=a0000c0ac0acbd0bd0b0000d=(adbc)n;
  5. D n = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋮ x 1 n − 1 x 2 n − 2 ⋯ x n n − 1 ∣ = ∏ n ⩾ i > j ⩾ 1 ( x i − x j ) ; D_n=\begin{vmatrix}1&1&\cdots&1\\x_1&x_2&\cdots&x_n\\x_1^2&x_2^2&\cdots&x_n^2\\\vdots&\vdots&&\vdots\\x_1^{n-1}&x_2^{n-2}&\cdots&x_n^{n-1}\end{vmatrix}=\prod\limits_{n\geqslant i>j\geqslant1}(x_i-x_j); Dn=1x1x12x1n11x2x22x2n21xnxn2xnn1=ni>j1(xixj);
  6. D = ∣ a 1 1 ⋯ 1 1 a 2 0 ⋮ ⋱ 1 0 a n ∣ = b a 2 a 3 ⋯ a n ( b = a 1 − 1 a 2 − ⋯ − 1 a n ) . D=\begin{vmatrix}a_1&1&\cdots&1\\1&a_2&&0\\\vdots&&\ddots&\\1&0&&a_n\end{vmatrix}=ba_2a_3\cdots a_n\left(b=a_1-\cfrac{1}{a_2}-\cdots-\cfrac{1}{a_n}\right). D=a1111a2010an=ba2a3an(b=a1a21an1).

习题一

8.计算下列各行列式( D k D_k Dk k k k阶行列式):

(6) D n = d e t ( a i j ) , 其中 a i j = ∣ i − j ∣ ; D_n=\mathrm{det}(a_{ij}),\text{其中}a_{ij}=|i-j|; Dn=det(aij),其中aij=ij;


D n = ∣ 0 1 2 ⋯ n − 1 1 0 1 ⋯ n − 2 2 1 0 ⋯ n − 3 ⋮ ⋮ ⋮ ⋮ n − 1 n − 2 n − 3 ⋯ 0 ∣ = r n − r n − 1 r n − 1 − r n − 2 ⋯ r 2 − r 1 ∣ 0 1 ⋯ n − 2 n − 1 1 − 1 ⋯ − 1 − 1 1 1 ⋯ − 1 − 1 ⋮ ⋮ ⋮ ⋮ 1 1 ⋯ 1 − 1 ∣ = c 1 + c n c 2 + c n ⋯ c n − 1 + c n ∣ n − 1 n ⋯ 2 n − 3 n − 1 0 − 2 ⋯ − 2 − 1 0 0 ⋯ − 2 − 1 ⋮ ⋮ ⋮ ⋮ 0 0 ⋯ 0 − 1 ∣ = ( − 1 ) n − 1 ( n − 1 ) 2 n − 2 . \begin{aligned} D_n&=\begin{vmatrix}0&1&2&\cdots&n-1\\1&0&1&\cdots&n-2\\2&1&0&\cdots&n-3\\\vdots&\vdots&\vdots&&\vdots\\n-1&n-2&n-3&\cdots&0\end{vmatrix}\underset{r_2-r_1}{\underset{\cdots}{\underset{r_{n-1}-r_{n-2}}{\xlongequal{r_n-r_{n-1}}}}}\begin{vmatrix}0&1&\cdots&n-2&n-1\\1&-1&\cdots&-1&-1\\1&1&\cdots&-1&-1\\\vdots&\vdots&&\vdots&\vdots\\1&1&\cdots&1&-1\end{vmatrix}\\ &\underset{c_{n-1}+c_n}{\underset{\cdots}{\underset{c_2+c_n}{\xlongequal{c_1+c_n}}}}\begin{vmatrix}n-1&n&\cdots&2n-3&n-1\\0&-2&\cdots&-2&-1\\0&0&\cdots&-2&-1\\\vdots&\vdots&&\vdots&\vdots\\0&0&\cdots&0&-1\end{vmatrix}=(-1)^{n-1}(n-1)2^{n-2}. \end{aligned} Dn=012n1101n2210n3n1n2n30r2r1rn1rn2rnrn1 01111111n2111n1111cn1+cnc2+cnc1+cn n1000n2002n3220n1111=(1)n1(n1)2n2.
这道题主要利用了化为上三角行列式的方法求解

(7) D n = ∣ 1 + a 1 1 ⋯ 1 1 1 + a 2 ⋯ 1 ⋮ ⋮ ⋮ 1 1 ⋯ 1 + a n ∣ , 其中 a 1 a 2 ⋯ a n ≠ 0. D_n=\begin{vmatrix}1+a_1&1&\cdots&1\\1&1+a_2&\cdots&1\\\vdots&\vdots&&\vdots\\1&1&\cdots&1+a_n\end{vmatrix},\text{其中}a_1a_2\cdots a_n\not =0. Dn=1+a11111+a21111+an,其中a1a2an=0.

  将原行列式化为上三角形行列式。为此,从第 2 2 2行起,各行均减去第 1 1 1行,得与如下行列式
D n = r i − r 1 i = 2 , ⋯   , n ∣ 1 + a 1 1 ⋯ 1 − a 1 a 2 ⋮ ⋱ − a 1 a n ∣ = c 1 + a 1 a i c i i = 2 , ⋯   , n ∣ b 1 ⋯ 1 0 a 2 ⋮ ⋱ 0 a n ∣ . D_n\underset{i=2,\cdots,n}{\xlongequal{r_i-r_1}}\begin{vmatrix}1+a_1&1&\cdots&1\\-a_1&a_2&&\\\vdots&&\ddots&\\-a_1&&&a_n\end{vmatrix}\underset{i=2,\cdots,n}{\xlongequal{c_1+\cfrac{a_1}{a_i}c_i}}\begin{vmatrix}b&1&\cdots&1\\0&a_2&&\\\vdots&&\ddots&\\0&&&a_n\end{vmatrix}. Dni=2,,nrir1 1+a1a1a11a21ani=2,,nc1+aia1ci b001a21an.
  其中 b = 1 + a 1 + a 1 ∑ i = 2 n 1 a i = a 1 ( 1 + ∑ i = 2 n 1 a i ) b=1+a_1+a_1\sum^n\limits_{i=2}\cfrac{1}{a_i}=a_1\left(1+\sum^n\limits_{i=2}\cfrac{1}{a_i}\right) b=1+a1+a1i=2nai1=a1(1+i=2nai1)。于是
D n = a 1 ⋯ a n ( 1 + ∑ i = 2 n 1 a i ) . D_n=a_1\cdots a_n\left(1+\sum^n\limits_{i=2}\cfrac{1}{a_i}\right). Dn=a1an(1+i=2nai1).
这道题主要利用了行列式变换求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值