高等数学张宇18讲 第十一讲 二重积分

目录

例题十一

例11.8  计算 I = ∫ 0 1 d y ∫ y 1 x 2 − y 2 d x I=\displaystyle\int^1_0\mathrm{d}y\displaystyle\int^1_y\sqrt{x^2-y^2}\mathrm{d}x I=01dyy1x2y2 dx


I = ∫ 0 1 d y ∫ y 1 x 2 − y 2 d x = ∬ D x 2 − y 2 d x d y = ∫ 0 1 d x ∫ 0 x x 2 − y 2 d y ∫ 0 x x 2 − y 2 d y = 令 y = sin ⁡ t ∫ 0 π 2 x cos ⁡ t ⋅ x cos ⁡ t d t = x 2 ∫ 0 π 2 cos ⁡ 2 t d t = x 2 ⋅ 1 2 ⋅ π 2 = π 4 x 2 . I=\displaystyle\int^1_0\mathrm{d}y\displaystyle\int^1_y\sqrt{x^2-y^2}\mathrm{d}x=\displaystyle\iint\limits_{D}\sqrt{x^2-y^2}\mathrm{d}x\mathrm{d}y=\displaystyle\int^1_0\mathrm{d}x\displaystyle\int^x_0\sqrt{x^2-y^2}\mathrm{d}y\\ \displaystyle\int^x_0\sqrt{x^2-y^2}\mathrm{d}y\xlongequal{\text{令}y=\sin t}\displaystyle\int^{\frac{\pi}{2}}_0x\cos t\cdot x\cos t\mathrm{d}t=x^2\displaystyle\int^{\frac{\pi}{2}}_0\cos^2t\mathrm{d}t=x^2\cdot\cfrac{1}{2}\cdot\cfrac{\pi}{2}=\cfrac{\pi}{4}x^2. I=01dyy1x2y2 dx=Dx2y2 dxdy=01dx0xx2y2 dy0xx2y2 dyy=sint 02πxcostxcostdt=x202πcos2tdt=x2212π=4πx2.
  故
I = ∫ 0 1 π 4 x 2 d x = π 4 ⋅ 1 3 = π 12 . I=\displaystyle\int^1_0\cfrac{\pi}{4}x^2\mathrm{d}x=\cfrac{\pi}{4}\cdot\cfrac{1}{3}=\cfrac{\pi}{12}. I=014πx2dx=4π31=12π.
这道题主要利用了换元法求解

例11.16  计算 lim ⁡ n → ∞ 1 n 3 ∬ D [ x 2 + y 2 ] d σ \lim\limits_{n\to\infty}\cfrac{1}{n^3}\displaystyle\iint\limits_{D}[\sqrt{x^2+y^2}]\mathrm{d}\sigma nlimn31D[x2+y2 ]dσ,其中 D = { ( x , y ) ∣ x 2 + y 2 ⩽ n 2 } , [ ⋅ ] D=\{(x,y)|x^2+y^2\leqslant n^2\},[\cdot] D={(x,y)x2+y2n2},[]是取整符号。

   I = lim ⁡ n → ∞ 1 n 3 ∫ 0 2 n d θ ∫ 0 n [ r ] r d r I=\lim\limits_{n\to\infty}\cfrac{1}{n^3}\displaystyle\int^{2n}_0\mathrm{d}\theta\displaystyle\int^n_0[r]r\mathrm{d}r I=nlimn3102ndθ0n[r]rdr。由于 r − 1 < [ r ] ⩽ r r-1<[r]\leqslant r r1<[r]r,则
1 3 − 1 2 n = 1 n 3 ∫ 0 n ( r − 1 ) r d r ⩽ 1 n 3 ∫ 0 n [ r ] r d r ⩽ 1 n 3 ∫ 0 n r 2 d r = 1 3 . \cfrac{1}{3}-\cfrac{1}{2n}=\cfrac{1}{n^3}\displaystyle\int^n_0(r-1)r\mathrm{d}r\leqslant\cfrac{1}{n^3}\displaystyle\int^n_0[r]r\mathrm{d}r\leqslant\cfrac{1}{n^3}\displaystyle\int^n_0r^2\mathrm{d}r=\cfrac{1}{3}. 312n1=n310n(r1)rdrn310n[r]rdrn310nr2dr=31.
  令 n → ∞ n\to\infty n,上式两端极限为 1 3 \cfrac{1}{3} 31,由夹挤定理知, I = 2 3 π I=\cfrac{2}{3}\pi I=32π

例11.18  设 f ( x ) f(x) f(x) [ 0 , 1 ] [0,1] [0,1]上是单调减少且为正值的连续函数。证明: ∫ 0 1 f 2 ( x ) d x ∫ 0 1 x f ( x ) d x ⩾ ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 f ( x ) d x . \displaystyle\int^1_0f^2(x)\mathrm{d}x\displaystyle\int^1_0xf(x)\mathrm{d}x\geqslant\displaystyle\int^1_0xf^2(x)\mathrm{d}x\displaystyle\int^1_0f(x)\mathrm{d}x. 01f2(x)dx01xf(x)dx01xf2(x)dx01f(x)dx.

  改写 1 → t 1\to t 1t。令 F ( t ) = ∫ 0 1 f 2 ( x ) d x ∫ 0 1 x f ( x ) d x − ∫ 0 1 x f 2 ( x ) d x ∫ 0 1 f ( x ) d x F(t)=\displaystyle\int^1_0f^2(x)\mathrm{d}x\displaystyle\int^1_0xf(x)\mathrm{d}x-\displaystyle\int^1_0xf^2(x)\mathrm{d}x\displaystyle\int^1_0f(x)\mathrm{d}x F(t)=01f2(x)dx01xf(x)dx01xf2(x)dx01f(x)dx,则
F ′ ( t ) = t f 2 ( t ) ∫ 0 t f ( x ) d x + f ( t ) ∫ 0 t x f 2 ( x ) d x − f 2 ( t ) ∫ 0 t x f ( x ) d x − t f ( t ) ∫ 0 t x f 2 ( x ) d x = ∫ 0 t f ( t ) f ( x ) ( t − x ) [ f ( t ) − f ( x ) ] d x ⩽ 0 , \begin{aligned} F'(t)&=tf^2(t)\displaystyle\int^t_0f(x)\mathrm{d}x+f(t)\displaystyle\int^t_0xf^2(x)\mathrm{d}x-f^2(t)\displaystyle\int^t_0xf(x)\mathrm{d}x-tf(t)\displaystyle\int^t_0xf^2(x)\mathrm{d}x\\ &=\displaystyle\int^t_0f(t)f(x)(t-x)[f(t)-f(x)]\mathrm{d}x\leqslant0, \end{aligned} F(t)=tf2(t)0tf(x)dx+f(t)0txf2(x)dxf2(t)0txf(x)dxtf(t)0txf2(x)dx=0tf(t)f(x)(tx)[f(t)f(x)]dx0,
  故 F ( 1 ) ⩽ F ( 0 ) = 0 F(1)\leqslant F(0)=0 F(1)F(0)=0,得证。(这道题主要利用了构造函数求解

例11.22  利用广义二重积分计算 ∫ 0 + ∞ e − x 2 d x \displaystyle\int^{+\infty}_0e^{-x^2}\mathrm{d}x 0+ex2dx

  设 I = ∫ 0 + ∞ e − x 2 d x I=\displaystyle\int^{+\infty}_0e^{-x^2}\mathrm{d}x I=0+ex2dx,于是
I 2 = ∫ 0 + ∞ e − x 2 d x ⋅ ∫ 0 + ∞ e − x 2 d x = ∫ 0 + ∞ e − x 2 d x ⋅ ∫ 0 + ∞ e − y 2 d y = ∫ 0 + ∞ d x ∫ 0 + ∞ e − ( x 2 + y 2 ) d y = ∬ x > 0 , y > 0 e − ( x 2 + y 2 ) d x d y = 极坐标变换 ∫ 0 π 2 d θ ∫ 0 + ∞ e − r 2 ⋅ r d r = π 2 ⋅ ( − 1 2 ) ∫ 0 + ∞ e − r 2 d ( − r 2 ) = − π 4 e − r 2 ∣ 0 + ∞ = π 4 . \begin{aligned} I^2&=\displaystyle\int^{+\infty}_0e^{-x^2}\mathrm{d}x\cdot\displaystyle\int^{+\infty}_0e^{-x^2}\mathrm{d}x=\displaystyle\int^{+\infty}_0e^{-x^2}\mathrm{d}x\cdot\displaystyle\int^{+\infty}_0e^{-y^2}\mathrm{d}y\\ &=\displaystyle\int^{+\infty}_0\mathrm{d}x\displaystyle\int^{+\infty}_0e^{-(x^2+y^2)}\mathrm{d}y=\displaystyle\iint\limits_{x>0,y>0}e^{-(x^2+y^2)}\mathrm{d}x\mathrm{d}y\\ &\xlongequal{\text{极坐标变换}}\displaystyle\int^{\frac{\pi}{2}}_0\mathrm{d}\theta\displaystyle\int^{+\infty}_0e^{-r^2}\cdot r\mathrm{d}r=\cfrac{\pi}{2}\cdot\left(-\cfrac{1}{2}\right)\displaystyle\int^{+\infty}_0e^{-r^2}\mathrm{d}(-r^2)\\ &=-\cfrac{\pi}{4}e^{-r^2}\biggm\vert^{+\infty}_0=\cfrac{\pi}{4}. \end{aligned} I2=0+ex2dx0+ex2dx=0+ex2dx0+ey2dy=0+dx0+e(x2+y2)dy=x>0,y>0e(x2+y2)dxdy极坐标变换 02πdθ0+er2rdr=2π(21)0+er2d(r2)=4πer20+=4π.
  故 I = ∫ 0 + ∞ e − x 2 d x = π 2 I=\displaystyle\int^{+\infty}_0e^{-x^2}\mathrm{d}x=\cfrac{\sqrt{\pi}}{2} I=0+ex2dx=2π 。(这道题主要利用了极坐标变换和构造函数求解

习题十一

11.8

(1)计算 lim ⁡ r → 0 + 1 π r 2 ∬ D e x 2 − y 2 cos ⁡ ( x + y ) d x d y \lim\limits_{r\to0^+}\cfrac{1}{\pi r^2}\displaystyle\iint\limits_{D}e^{x^2-y^2}\cos(x+y)\mathrm{d}x\mathrm{d}y r0+limπr21Dex2y2cos(x+y)dxdy,其中积分区域 D = { ( x , y ) ∣ x 2 + y 2 ⩽ r 2 } D=\{(x,y)|x^2+y^2\leqslant r^2\} D={(x,y)x2+y2r2}

  因为 e x 2 − y 2 cos ⁡ ( x + y ) e^{x^2-y^2}\cos(x+y) ex2y2cos(x+y) D D D上连续,由积分中值定理有,在 D D D上至少存在一点 ( ϵ , η ) (\epsilon,\eta) (ϵ,η),使 ∬ D e x 2 − y 2 cos ⁡ ( x + y ) d x d y = e ϵ 2 − η 2 cos ⁡ ( ϵ + η ) π r 2 \displaystyle\iint\limits_{D}e^{x^2-y^2}\cos(x+y)\mathrm{d}x\mathrm{d}y=e^{\epsilon^2-\eta^2}\cos(\epsilon+\eta)\pi r^2 Dex2y2cos(x+y)dxdy=eϵ2η2cos(ϵ+η)πr2。由于 ( ϵ , η ) (\epsilon,\eta) (ϵ,η) D D D上,所以当 r → 0 + r\to0^+ r0+时, ( ϵ , η ) → ( 0 , 0 ) (\epsilon,\eta)\to(0,0) (ϵ,η)(0,0),于是 lim ⁡ r → 0 + 1 π r 2 ∬ D e x 2 − y 2 cos ⁡ ( x + y ) d x d y = lim ⁡ ( ϵ , η ) → ( 0 , 0 ) e ϵ 2 − η 2 cos ⁡ ( ϵ + η ) = 1 \lim\limits_{r\to0^+}\cfrac{1}{\pi r^2}\displaystyle\iint\limits_{D}e^{x^2-y^2}\cos(x+y)\mathrm{d}x\mathrm{d}y=\lim\limits_{(\epsilon,\eta)\to(0,0)}e^{\epsilon^2-\eta^2}\cos(\epsilon+\eta)=1 r0+limπr21Dex2y2cos(x+y)dxdy=(ϵ,η)(0,0)limeϵ2η2cos(ϵ+η)=1。(这道题主要利用了积分中值定理求解

新版例题十四

例14.5

在这里插入图片描述

在这里插入图片描述

例14.12

在这里插入图片描述

例14.13

在这里插入图片描述

在这里插入图片描述

例14.14

在这里插入图片描述

例14.21

在这里插入图片描述

在这里插入图片描述

例14.22

在这里插入图片描述

在这里插入图片描述

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 1
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值