目录
- A A A组
- B B B组
- 2.微分方程 d y d x = 2 x y x 2 + y \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{2xy}{x^2+y} dxdy=x2+y2xy的通解为______。
- 3.微分方程 y d x − x d y = x 2 y d y y\mathrm{d}x-x\mathrm{d}y=x^2y\mathrm{d}y ydx−xdy=x2ydy的通解为______。
- 10.设 a > 0 a>0 a>0,函数 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infty) [0,+∞)内连续有界,证明:微分方程 y ′ + a y = f ( x ) y'+ay=f(x) y′+ay=f(x)的解在 [ 0 , + ∞ ) [0,+\infty) [0,+∞)内有界。
- 18.求 ( 5 x 2 y 3 − 2 x ) y ′ + y = 0 (5x^2y^3-2x)y'+y=0 (5x2y3−2x)y′+y=0的通解。
- 25.设 f ( x ) f(x) f(x)在区间 [ 0 , + ∞ ) [0,+\infty) [0,+∞)上具有连续的一阶导数,且满足 f ( 0 ) = 1 f(0)=1 f(0)=1及 f ′ ( x ) + f ( x ) − 1 1 + x ∫ 0 x f ( t ) d t = 0 f'(x)+f(x)-\cfrac{1}{1+x}\displaystyle\int^x_0f(t)\mathrm{d}t=0 f′(x)+f(x)−1+x1∫0xf(t)dt=0。
- 26.求微分方程 { y ′ ′ + y = x , x ⩽ π 2 , y ′ ′ + 4 y = 0 , x > π 4 \begin{cases}y''+y=x,&x\leqslant\cfrac{\pi}{2},\\y''+4y=0,&x>\cfrac{\pi}{4}\end{cases} ⎩⎪⎨⎪⎧y′′+y=x,y′′+4y=0,x⩽2π,x>4π满足条件 y ∣ x = 0 = 0 , y ′ ∣ x = 0 = 0 y\biggm\vert_{x=0}=0,y'\biggm\vert_{x=0}=0 y∣∣∣∣x=0=0,y′∣∣∣∣x=0=0且在 x = π 2 x=\cfrac{\pi}{2} x=2π处可导的特解。
- 27.已知平面上的曲线 y = f ( x ) y=f(x) y=f(x)与曲线 ∫ 0 x 2 + y e − t 2 d t = 2 y − x cos x \displaystyle\int^{x^2+y}_0e^{-t^2}\mathrm{d}t=2y-x\cos x ∫0x2+ye−t2dt=2y−xcosx相切于点 ( 0 , 0 ) (0,0) (0,0),且 f ( x ) f(x) f(x)满足微分方程 y ′ ′ − 2 y ′ − 3 y = 3 x − 1 y''-2y'-3y=3x-1 y′′−2y′−3y=3x−1。求函数 f ( x ) f(x) f(x)。
- C C C组
- 1.微分方程 d 2 y d x 2 + ( x + sin y ) ( d y d x ) 3 = 0 \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}+(x+\sin y)\left(\cfrac{\mathrm{d}y}{\mathrm{d}x}\right)^3=0 dx2d2y+(x+siny)(dxdy)3=0满足初值条件 y ( 0 ) = 0 , y ′ ( 0 ) = 2 3 y(0)=0,y'(0)=\cfrac{2}{3} y(0)=0,y′(0)=32的特解是______。
- 4.已知 y = f ( x ) y=f(x) y=f(x)是微分方程 x y ′ − y = 2 x − x 2 xy'-y=\sqrt{2x-x^2} xy′−y=2x−x2满足初值条件 f ( 1 ) = 0 f(1)=0 f(1)=0的特解。则 ∫ 0 1 f ( x ) d x = \displaystyle\int^1_0f(x)\mathrm{d}x= ∫01f(x)dx=______。
- 8.设 y ( x ) y(x) y(x)是方程 y ( 4 ) − y ′ ′ = 0 y^{(4)}-y''=0 y(4)−y′′=0的解,且当 x → 0 x\to0 x→0时, y ( x ) y(x) y(x)是 x x x的 3 3 3阶无穷小,求 y ( x ) y(x) y(x)。
- 11.求方程 x 2 d 2 y d x 2 − 2 y = x 2 x^2\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}-2y=x^2 x2dx2d2y−2y=x2的通解。
- 14.求一条凹曲线,已知其上任意一点处的曲率 k = 1 2 y 2 ∣ cos α ∣ k=\cfrac{1}{2y^2|\cos\alpha|} k=2y2∣cosα∣1,其中 α \alpha α为该曲线在相应点处的切线的倾斜角,且该曲线在 ( 1 , 1 ) (1,1) (1,1)点处的切线为水平方向。
- 写在最后
A A A组
10.微分方程 ( 1 + x 2 ) y ′ ′ − 2 x y ′ = 0 (1+x^2)y''-2xy'=0 (1+x2)y′′−2xy′=0的通解为______。
解 令 y ′ = p y'=p y′=p,则方程 ( 1 + x 2 ) y ′ ′ − 2 x y ′ = 0 (1+x^2)y''-2xy'=0 (1+x2)y′′−2xy′=0化为 p ′ = 2 x 1 + x 2 p p'=\cfrac{2x}{1+x^2}p p′=1+x22xp,两端分别积分 ∫ d p p = ∫ 2 x 1 + x 2 d x \displaystyle\int\cfrac{\mathrm{d}p}{p}=\displaystyle\int\cfrac{2x}{1+x^2}\mathrm{d}x ∫pdp=∫1+x22xdx,得 ln ∣ p ∣ = ln ( 1 + x 2 ) + C 0 \ln|p|=\ln(1+x^2)+C_0 ln∣p∣=ln(1+x2)+C0,即 y ′ = C 1 ( 1 + x 2 ) y'=C_1(1+x^2) y′=C1(1+x2)。积分可得 y = C 1 ( x + x 3 3 ) + C 2 y=C_1\left(x+\cfrac{x^3}{3}\right)+C_2 y=C1(x+3x3)+C2,其中 C 1 C_1 C1为非零常数, C 2 C_2 C2为任意常数。(这道题主要利用了换元法求解)
B B B组
2.微分方程 d y d x = 2 x y x 2 + y \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{2xy}{x^2+y} dxdy=x2+y2xy的通解为______。
解 原方程改写为 d x d y = x 2 + y 2 x y = x 2 y + 1 2 x \cfrac{\mathrm{d}x}{\mathrm{d}y}=\cfrac{x^2+y}{2xy}=\cfrac{x}{2y}+\cfrac{1}{2x} dydx=2xyx2+y=2yx+2x1,这是一个伯努利方程。令 z = x 2 z=x^2 z=x2,有 d z d y − z y = 1 \cfrac{\mathrm{d}z}{\mathrm{d}y}-\cfrac{z}{y}=1 dydz−yz=1,得 x 2 = z = e ∫ 1 y d y ( ∫ e − ∫ 1 y d y d y + C ) = y ( ln ∣ y ∣ + C ) x^2=z=e^{\int\frac{1}{y}\mathrm{d}y}\left(\displaystyle\int e^{-\int\frac{1}{y}\mathrm{d}y}\mathrm{d}y+C\right)=y(\ln|y|+C) x2=z=e∫y1dy(∫e−∫y1dydy+C)=y(ln∣y∣+C),其中 C C C为任意常数。(这道题主要利用了伯努利方程求解)
3.微分方程 y d x − x d y = x 2 y d y y\mathrm{d}x-x\mathrm{d}y=x^2y\mathrm{d}y ydx−xdy=x2ydy的通解为______。
解 将方程改写为 y d y − y d x − x d y x 2 = 0 y\mathrm{d}y-\cfrac{y\mathrm{d}x-x\mathrm{d}y}{x^2}=0 ydy−x2ydx−xdy=0,此为全微分方程,即 d ( y 2 2 + y x ) = 0 \mathrm{d}\left(\cfrac{y^2}{2}+\cfrac{y}{x}\right)=0 d(2y2+xy)=0。通解为 y 2 2 + y x = C \cfrac{y^2}{2}+\cfrac{y}{x}=C 2y2+xy=C,其中 C C C为任意常数。
10.设 a > 0 a>0 a>0,函数 f ( x ) f(x) f(x)在 [ 0 , + ∞ ) [0,+\infty) [0,+∞)内连续有界,证明:微分方程 y ′ + a y = f ( x ) y'+ay=f(x) y′+ay=f(x)的解在 [ 0 , + ∞ ) [0,+\infty) [0,+∞)内有界。
解 原方程的通解为
y
(
x
)
=
e
−
a
x
[
C
+
∫
0
x
f
(
t
)
e
a
t
d
t
]
y(x)=e^{-ax}\left[C+\displaystyle\int^x_0f(t)e^{at}\mathrm{d}t\right]
y(x)=e−ax[C+∫0xf(t)eatdt],其中
C
C
C为任意常数。
因
f
(
x
)
f(x)
f(x)在
[
0
,
+
∞
)
[0,+\infty)
[0,+∞)内有界,设
∣
f
(
x
)
∣
⩽
M
|f(x)|\leqslant M
∣f(x)∣⩽M,则当
x
⩾
0
x\geqslant0
x⩾0时,有
∣
y
(
x
)
∣
=
∣
e
−
a
x
[
C
+
∫
0
x
f
(
t
)
e
a
t
d
t
]
∣
⩽
∣
C
e
−
a
x
∣
+
e
−
a
x
∣
∫
0
x
f
(
t
)
e
a
t
d
t
∣
⩽
∣
C
∣
+
M
e
−
a
x
∫
0
x
e
a
t
d
t
=
∣
C
∣
+
M
a
(
1
−
e
−
a
x
)
⩽
∣
C
∣
+
M
a
.
\begin{aligned} |y(x)|&=\left|e^{-ax}\left[C+\displaystyle\int^x_0f(t)e^{at}\mathrm{d}t\right]\right|\leqslant\left|Ce^{-ax}\right|+e^{-ax}\left|\displaystyle\int^x_0f(t)e^{at}\mathrm{d}t\right|\\ &\leqslant|C|+Me^{-ax}\displaystyle\int^x_0e^{at}\mathrm{d}t=|C|+\cfrac{M}{a}(1-e^{-ax})\leqslant|C|+\cfrac{M}{a}. \end{aligned}
∣y(x)∣=∣∣∣∣e−ax[C+∫0xf(t)eatdt]∣∣∣∣⩽∣∣Ce−ax∣∣+e−ax∣∣∣∣∫0xf(t)eatdt∣∣∣∣⩽∣C∣+Me−ax∫0xeatdt=∣C∣+aM(1−e−ax)⩽∣C∣+aM.
即
y
(
x
)
y(x)
y(x)在
[
0
,
+
∞
)
[0,+\infty)
[0,+∞)内有界。(这道题主要利用了放缩法求解)
18.求 ( 5 x 2 y 3 − 2 x ) y ′ + y = 0 (5x^2y^3-2x)y'+y=0 (5x2y3−2x)y′+y=0的通解。
解 交换 x , y x,y x,y地位,认定 x x x为 y y y的函数,则原方程化为 − y d x d y + 2 x = 5 x 2 y 3 -y\cfrac{\mathrm{d}x}{\mathrm{d}y}+2x=5x^2y^3 −ydydx+2x=5x2y3,是 n = 2 n=2 n=2的伯努利方程。令 z = x 1 − 2 = 1 x z=x^{1-2}=\cfrac{1}{x} z=x1−2=x1,则上述方程可化为 y d z d y + 2 z = 5 y 3 y\cfrac{\mathrm{d}z}{\mathrm{d}y}+2z=5y^3 ydydz+2z=5y3,进一步化为一阶线性微分方程的标准形式 d z d y + 2 y z = 5 y 2 \cfrac{\mathrm{d}z}{\mathrm{d}y}+\cfrac{2}{y}z=5y^2 dydz+y2z=5y2。由通解公式得 z = e − ∫ 2 y d y ( ∫ 5 y 2 e ∫ 2 y d y d y + C ) = 1 y 2 ( ∫ 5 y 2 ⋅ y 2 d y + C ) = y 3 + C y 2 z=e^{-\int\frac{2}{y}\mathrm{d}y}\left(\displaystyle\int5y^2e^{\int\frac{2}{y}\mathrm{d}y}\mathrm{d}y+C\right)=\cfrac{1}{y^2}\left(\displaystyle\int5y^2\cdot y^2\mathrm{d}y+C\right)=y^3+\cfrac{C}{y^2} z=e−∫y2dy(∫5y2e∫y2dydy+C)=y21(∫5y2⋅y2dy+C)=y3+y2C,故原方程的通解为 1 x = y 3 + C y 2 \cfrac{1}{x}=y^3+\cfrac{C}{y^2} x1=y3+y2C,其中 C C C为任意常数。(这道题主要利用了伯努利方程求解)
25.设 f ( x ) f(x) f(x)在区间 [ 0 , + ∞ ) [0,+\infty) [0,+∞)上具有连续的一阶导数,且满足 f ( 0 ) = 1 f(0)=1 f(0)=1及 f ′ ( x ) + f ( x ) − 1 1 + x ∫ 0 x f ( t ) d t = 0 f'(x)+f(x)-\cfrac{1}{1+x}\displaystyle\int^x_0f(t)\mathrm{d}t=0 f′(x)+f(x)−1+x1∫0xf(t)dt=0。
(1)求导函数 f ′ ( x ) f'(x) f′(x);
解 由题设可知
f
′
(
0
)
+
f
(
0
)
=
0
f'(0)+f(0)=0
f′(0)+f(0)=0,即
f
′
(
0
)
=
−
f
(
0
)
=
−
1
f'(0)=-f(0)=-1
f′(0)=−f(0)=−1,且
(
x
+
1
)
[
f
′
(
x
)
+
f
(
x
)
]
=
∫
0
x
f
(
t
)
d
t
(
x
⩾
0
)
(x+1)[f'(x)+f(x)]=\displaystyle\int^x_0f(t)\mathrm{d}t(x\geqslant0)
(x+1)[f′(x)+f(x)]=∫0xf(t)dt(x⩾0)。
将上式两端对
x
x
x求导并整理,得
(
x
+
1
)
f
′
′
(
x
)
+
(
x
+
2
)
f
′
(
x
)
=
0
(x+1)f''(x)+(x+2)f'(x)=0
(x+1)f′′(x)+(x+2)f′(x)=0,这是以
f
′
(
x
)
f'(x)
f′(x)为未知函数的变量可分离的方程,故可求其通解为
f
′
(
x
)
=
C
e
−
x
1
+
x
f'(x)=C\cfrac{e^{-x}}{1+x}
f′(x)=C1+xe−x。
代入初值条件
f
′
(
0
)
=
−
1
f'(0)=-1
f′(0)=−1,得
C
=
−
1
C=-1
C=−1,所以
f
′
(
x
)
=
−
e
−
x
1
+
x
(
x
⩾
0
)
f'(x)=-\cfrac{e^{-x}}{1+x}(x\geqslant0)
f′(x)=−1+xe−x(x⩾0)。
(2)证明:当 x > 0 x>0 x>0时,有 e − x < f ( x ) < 1 e^{-x}<f(x)<1 e−x<f(x)<1。
解 对
f
(
x
)
f(x)
f(x)在区间
[
0
,
x
]
[0,x]
[0,x]上应用拉格朗日中值定理,得
f
(
x
)
−
f
(
0
)
=
x
f
′
(
ξ
)
=
−
x
e
−
ξ
1
+
ξ
(
0
<
ξ
<
x
)
f(x)-f(0)=xf'(\xi)=-x\cfrac{e^{-\xi}}{1+\xi}(0<\xi<x)
f(x)−f(0)=xf′(ξ)=−x1+ξe−ξ(0<ξ<x),所以
f
(
x
)
<
f
(
0
)
=
1
f(x)<f(0)=1
f(x)<f(0)=1。
为了证明
e
−
x
<
f
(
x
)
e^{-x}<f(x)
e−x<f(x),构造辅助函数
F
(
x
)
=
f
(
x
)
−
e
−
x
F(x)=f(x)-e^{-x}
F(x)=f(x)−e−x。因为
F
′
(
x
)
=
f
′
(
x
)
+
e
−
x
=
−
e
−
x
1
+
x
+
e
−
x
=
x
e
−
x
1
+
x
F'(x)=f'(x)+e^{-x}=-\cfrac{e^{-x}}{1+x}+e^{-x}=\cfrac{xe^{-x}}{1+x}
F′(x)=f′(x)+e−x=−1+xe−x+e−x=1+xxe−x,所以函数
F
(
x
)
F(x)
F(x)在区间
[
0
,
+
∞
)
[0,+\infty)
[0,+∞)上单调递增,故当
x
>
0
x>0
x>0时,
F
(
x
)
>
F
(
0
)
=
0
F(x)>F(0)=0
F(x)>F(0)=0,即
f
(
x
)
>
e
−
x
f(x)>e^{-x}
f(x)>e−x。(这道题主要利用了构造函数求解)
26.求微分方程 { y ′ ′ + y = x , x ⩽ π 2 , y ′ ′ + 4 y = 0 , x > π 4 \begin{cases}y''+y=x,&x\leqslant\cfrac{\pi}{2},\\y''+4y=0,&x>\cfrac{\pi}{4}\end{cases} ⎩⎪⎨⎪⎧y′′+y=x,y′′+4y=0,x⩽2π,x>4π满足条件 y ∣ x = 0 = 0 , y ′ ∣ x = 0 = 0 y\biggm\vert_{x=0}=0,y'\biggm\vert_{x=0}=0 y∣∣∣∣x=0=0,y′∣∣∣∣x=0=0且在 x = π 2 x=\cfrac{\pi}{2} x=2π处可导的特解。
解 先求解当
x
⩽
π
2
x\leqslant\cfrac{\pi}{2}
x⩽2π时的初值问题
{
y
′
′
+
y
=
x
,
y
(
0
)
=
y
′
(
0
)
=
0.
\begin{cases}y''+y=x,\\y(0)=y'(0)=0.\end{cases}
{y′′+y=x,y(0)=y′(0)=0.
易知,方程
y
′
′
+
y
=
x
y''+y=x
y′′+y=x的通解为
y
=
C
1
cos
x
+
C
2
sin
x
+
x
y=C_1\cos x+C_2\sin x+x
y=C1cosx+C2sinx+x。根据条件
y
(
0
)
=
y
′
(
0
)
=
0
y(0)=y'(0)=0
y(0)=y′(0)=0可解得
C
1
=
0
,
C
2
=
−
1
C_1=0,C_2=-1
C1=0,C2=−1,所以相应的特解为
y
=
x
−
sin
x
(
x
⩽
π
2
)
y=x-\sin x\left(x\leqslant\cfrac{\pi}{2}\right)
y=x−sinx(x⩽2π),此时,有
y
∣
x
=
π
2
=
π
2
−
1
,
y
′
∣
x
=
π
2
=
1
y\biggm\vert_{x=\frac{\pi}{2}}=\cfrac{\pi}{2}-1,y'\biggm\vert_{x=\frac{\pi}{2}}=1
y∣∣∣∣x=2π=2π−1,y′∣∣∣∣x=2π=1。
进一步,当
x
>
π
2
x>\cfrac{\pi}{2}
x>2π时,欲使所求的解在
x
=
π
2
x=\cfrac{\pi}{2}
x=2π处可导(因而必连续),这就归结为求解新的初值问题
{
y
′
′
+
4
y
=
0
,
y
∣
x
=
π
2
=
π
2
−
1
,
y
′
∣
x
=
π
2
=
1
\begin{cases}y''+4y=0,\\y\biggm\vert_{x=\frac{\pi}{2}}=\cfrac{\pi}{2}-1,y'\biggm\vert_{x=\frac{\pi}{2}}=1\end{cases}
⎩⎪⎨⎪⎧y′′+4y=0,y∣∣∣∣x=2π=2π−1,y′∣∣∣∣x=2π=1。易知,方程
y
′
′
+
4
y
=
0
y''+4y=0
y′′+4y=0的通解为
y
=
C
3
cos
2
x
+
C
4
sin
2
x
y=C_3\cos2x+C_4\sin2x
y=C3cos2x+C4sin2x。再由初始条件
y
∣
x
=
π
2
=
π
2
−
1
,
y
′
∣
x
=
π
2
=
1
y\biggm\vert_{x=\frac{\pi}{2}}=\cfrac{\pi}{2}-1,y'\biggm\vert_{x=\frac{\pi}{2}}=1
y∣∣∣∣x=2π=2π−1,y′∣∣∣∣x=2π=1可解得
C
3
=
1
−
π
2
,
C
4
=
−
π
2
C_3=1-\cfrac{\pi}{2},C_4=-\cfrac{\pi}{2}
C3=1−2π,C4=−2π。所以相应的特解为
y
=
(
1
−
π
2
)
cos
2
x
−
1
2
sin
2
x
(
x
>
π
2
)
y=\left(1-\cfrac{\pi}{2}\right)\cos2x-\cfrac{1}{2}\sin2x\left(x>\cfrac{\pi}{2}\right)
y=(1−2π)cos2x−21sin2x(x>2π)。
因此,原方程满足所给条件的特解为
y
=
{
x
−
sin
x
,
x
⩽
π
2
,
(
1
−
π
2
)
cos
2
x
−
1
2
sin
2
x
,
x
>
π
2
.
y=\begin{cases}x-\sin x,&x\leqslant\cfrac{\pi}{2},\\\left(1-\cfrac{\pi}{2}\right)\cos2x-\cfrac{1}{2}\sin2x,&x>\cfrac{\pi}{2}.\end{cases}
y=⎩⎪⎪⎨⎪⎪⎧x−sinx,(1−2π)cos2x−21sin2x,x⩽2π,x>2π.
可以验证所求函数
y
y
y在
x
=
π
2
x=\cfrac{\pi}{2}
x=2π处可导。(这道题主要利用了分段函数求解)
27.已知平面上的曲线 y = f ( x ) y=f(x) y=f(x)与曲线 ∫ 0 x 2 + y e − t 2 d t = 2 y − x cos x \displaystyle\int^{x^2+y}_0e^{-t^2}\mathrm{d}t=2y-x\cos x ∫0x2+ye−t2dt=2y−xcosx相切于点 ( 0 , 0 ) (0,0) (0,0),且 f ( x ) f(x) f(x)满足微分方程 y ′ ′ − 2 y ′ − 3 y = 3 x − 1 y''-2y'-3y=3x-1 y′′−2y′−3y=3x−1。求函数 f ( x ) f(x) f(x)。
解 记
y
=
g
(
x
)
y=g(x)
y=g(x)是由方程
∫
0
x
2
+
y
e
−
t
2
d
t
=
2
y
−
x
cos
x
\displaystyle\int^{x^2+y}_0e^{-t^2}\mathrm{d}t=2y-x\cos x
∫0x2+ye−t2dt=2y−xcosx相确定的隐函数。对方程两边关于
x
x
x求导,并利用隐函数求导法则,及积分上限函数的求导法则,有
e
−
(
x
2
+
y
)
2
(
2
x
+
y
′
)
=
2
y
′
−
cos
x
+
x
sin
x
e^{-(x^2+y)^2}(2x+y')=2y'-\cos x+x\sin x
e−(x2+y)2(2x+y′)=2y′−cosx+xsinx。
将
x
=
0
,
y
=
0
x=0,y=0
x=0,y=0代入上式,可得
y
′
(
0
)
=
1
y'(0)=1
y′(0)=1,即
g
′
(
0
)
=
1
g'(0)=1
g′(0)=1。
因为两曲线都经过点
(
0
,
0
)
(0,0)
(0,0)且在该点处具有公切线,所以
f
(
0
)
=
0
,
f
′
(
0
)
=
g
′
(
0
)
=
1
f(0)=0,f'(0)=g'(0)=1
f(0)=0,f′(0)=g′(0)=1。因此,函数
f
(
x
)
f(x)
f(x)是初值问题
{
y
′
′
−
2
y
′
−
3
y
=
3
x
−
1
,
y
∣
x
=
0
=
0
,
y
′
∣
x
=
0
=
1
\begin{cases}y''-2y'-3y=3x-1,\\y\biggm|_{x=0}=0,y'\biggm|_{x=0}=1\end{cases}
⎩⎨⎧y′′−2y′−3y=3x−1,y∣∣∣∣x=0=0,y′∣∣∣∣x=0=1的解。下面先求方程
y
′
′
−
2
y
′
−
3
y
=
3
x
−
1
y''-2y'-3y=3x-1
y′′−2y′−3y=3x−1的通解。
对应齐次方程的特征方程
r
2
−
2
r
−
3
=
0
r^2-2r-3=0
r2−2r−3=0有互异根
r
1
=
−
1
,
r
2
=
3
r_1=-1,r_2=3
r1=−1,r2=3,则齐次方程的通解为
Y
=
C
1
e
−
x
+
C
2
e
3
x
Y=C_1e^{-x}+C_2e^{3x}
Y=C1e−x+C2e3x。非齐次方程的自由项
3
x
−
1
3x-1
3x−1,写成
P
m
(
x
)
e
λ
x
P_m(x)e^{\lambda x}
Pm(x)eλx的形式,应有
P
1
(
x
)
=
3
x
−
1
,
λ
=
0
P_1(x)=3x-1,\lambda=0
P1(x)=3x−1,λ=0。而
λ
=
0
\lambda=0
λ=0不是特征方程的根,故应设特解为
y
∗
=
a
x
+
b
y^*=ax+b
y∗=ax+b。代入原方程,解得
a
=
−
1
,
b
=
1
a=-1,b=1
a=−1,b=1,则
y
∗
=
−
x
+
1
y^*=-x+1
y∗=−x+1。因此,方程的通解为
f
(
x
)
=
Y
+
y
∗
=
C
1
e
−
x
+
C
2
e
3
x
−
x
+
1
f(x)=Y+y^*=C_1e^{-x}+C_2e^{3x}-x+1
f(x)=Y+y∗=C1e−x+C2e3x−x+1。
最后,由
f
(
0
)
=
0
,
f
′
(
0
)
=
1
f(0)=0,f'(0)=1
f(0)=0,f′(0)=1解得
C
1
=
−
5
4
,
C
2
=
1
4
C_1=-\cfrac{5}{4},C_2=\cfrac{1}{4}
C1=−45,C2=41,所以
f
(
x
)
=
−
5
4
e
−
x
+
1
4
e
3
x
−
x
+
1
f(x)=-\cfrac{5}{4}e^{-x}+\cfrac{1}{4}e^{3x}-x+1
f(x)=−45e−x+41e3x−x+1。(这道题主要利用了积分上限函数的求导法则求解)
C C C组
1.微分方程 d 2 y d x 2 + ( x + sin y ) ( d y d x ) 3 = 0 \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}+(x+\sin y)\left(\cfrac{\mathrm{d}y}{\mathrm{d}x}\right)^3=0 dx2d2y+(x+siny)(dxdy)3=0满足初值条件 y ( 0 ) = 0 , y ′ ( 0 ) = 2 3 y(0)=0,y'(0)=\cfrac{2}{3} y(0)=0,y′(0)=32的特解是______。
解 由反函数的求导法则
d
y
d
x
=
1
d
x
d
y
,
d
2
y
d
x
2
=
−
d
2
x
d
y
2
(
d
x
d
y
)
3
\cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{1}{\cfrac{\mathrm{d}x}{\mathrm{d}y}},\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=-\cfrac{\cfrac{\mathrm{d}^2x}{\mathrm{d}y^2}}{\left(\cfrac{\mathrm{d}x}{\mathrm{d}y}\right)^3}
dxdy=dydx1,dx2d2y=−(dydx)3dy2d2x可知,原方程可化为
x
x
x关于
y
y
y的二阶常系数线性方程。将两式代入原方程,原方程化为
d
2
x
d
y
2
−
x
=
sin
y
\cfrac{\mathrm{d}^2x}{\mathrm{d}y^2}-x=\sin y
dy2d2x−x=siny,解得
x
x
x关于
y
y
y的通解为
x
=
C
1
e
y
+
C
2
e
−
y
−
1
2
sin
y
x=C_1e^y+C_2e^{-y}-\cfrac{1}{2}\sin y
x=C1ey+C2e−y−21siny,当
x
=
0
x=0
x=0时,
y
=
0
y=0
y=0,代入得
C
1
+
C
2
=
0
C_1+C_2=0
C1+C2=0。将上式对
y
y
y两边求导,有
d
x
d
y
=
C
1
e
y
−
C
2
e
−
y
−
1
2
cos
y
\cfrac{\mathrm{d}x}{\mathrm{d}y}=C_1e^y-C_2e^{-y}-\cfrac{1}{2}\cos y
dydx=C1ey−C2e−y−21cosy,当
x
=
0
x=0
x=0时,
d
x
d
y
=
1
d
y
d
x
=
3
2
\cfrac{\mathrm{d}x}{\mathrm{d}y}=\cfrac{1}{\cfrac{\mathrm{d}y}{\mathrm{d}x}}=\cfrac{3}{2}
dydx=dxdy1=23,代入上式,有
3
2
=
C
1
−
C
2
−
1
2
\cfrac{3}{2}=C_1-C_2-\cfrac{1}{2}
23=C1−C2−21,解得
C
1
=
1
,
C
2
=
−
1
C_1=1,C_2=-1
C1=1,C2=−1。
于是得特解
x
=
e
y
−
e
−
y
−
1
2
sin
y
x=e^y-e^{-y}-\cfrac{1}{2}\sin y
x=ey−e−y−21siny。(这道题主要利用了反函数的求导法则求解)
4.已知 y = f ( x ) y=f(x) y=f(x)是微分方程 x y ′ − y = 2 x − x 2 xy'-y=\sqrt{2x-x^2} xy′−y=2x−x2满足初值条件 f ( 1 ) = 0 f(1)=0 f(1)=0的特解。则 ∫ 0 1 f ( x ) d x = \displaystyle\int^1_0f(x)\mathrm{d}x= ∫01f(x)dx=______。
解
∫
0
1
f
(
x
)
d
x
=
x
f
(
x
)
∣
0
1
−
∫
0
1
x
f
′
(
x
)
d
x
=
−
∫
0
1
[
f
(
x
)
+
2
x
−
x
2
]
d
x
=
−
∫
0
1
f
(
x
)
d
x
−
∫
0
1
2
x
−
x
2
d
x
,
∫
0
1
f
(
x
)
d
x
=
−
1
2
∫
0
1
2
x
−
x
2
d
x
=
−
1
2
∫
0
1
1
−
(
x
−
1
)
2
d
x
=
x
−
1
=
sin
t
−
1
2
∫
0
1
cos
2
t
d
t
=
−
π
8
.
\begin{aligned} \displaystyle\int^1_0f(x)\mathrm{d}x&=xf(x)\biggm\vert^1_0-\displaystyle\int^1_0xf'(x)\mathrm{d}x=-\displaystyle\int^1_0[f(x)+\sqrt{2x-x^2}]\mathrm{d}x\\ &=-\displaystyle\int^1_0f(x)\mathrm{d}x-\displaystyle\int^1_0\sqrt{2x-x^2}\mathrm{d}x, \end{aligned}\\ \begin{aligned} \displaystyle\int^1_0f(x)\mathrm{d}x&=-\cfrac{1}{2}\displaystyle\int^1_0\sqrt{2x-x^2}\mathrm{d}x=-\cfrac{1}{2}\displaystyle\int^1_0\sqrt{1-(x-1)^2}\mathrm{d}x\\ &\xlongequal{x-1=\sin t}-\cfrac{1}{2}\displaystyle\int^1_0\cos^2t\mathrm{d}t=-\cfrac{\pi}{8}. \end{aligned}
∫01f(x)dx=xf(x)∣∣∣∣01−∫01xf′(x)dx=−∫01[f(x)+2x−x2]dx=−∫01f(x)dx−∫012x−x2dx,∫01f(x)dx=−21∫012x−x2dx=−21∫011−(x−1)2dxx−1=sint−21∫01cos2tdt=−8π.
(这道题主要利用了分部积分法求解)
8.设 y ( x ) y(x) y(x)是方程 y ( 4 ) − y ′ ′ = 0 y^{(4)}-y''=0 y(4)−y′′=0的解,且当 x → 0 x\to0 x→0时, y ( x ) y(x) y(x)是 x x x的 3 3 3阶无穷小,求 y ( x ) y(x) y(x)。
解 由泰勒公式
y
(
x
)
=
y
(
0
)
+
y
′
(
0
)
x
+
1
2
y
′
′
(
0
)
x
2
+
1
3
!
y
′
′
′
(
0
)
x
3
+
ο
(
x
3
)
(
x
→
0
)
y(x)=y(0)+y'(0)x+\cfrac{1}{2}y''(0)x^2+\cfrac{1}{3!}y'''(0)x^3+\omicron(x^3)(x\to0)
y(x)=y(0)+y′(0)x+21y′′(0)x2+3!1y′′′(0)x3+ο(x3)(x→0)。当
x
→
0
x\to0
x→0时,
y
(
x
)
y(x)
y(x)与
x
3
x^3
x3同阶,则
y
(
0
)
=
0
,
y
′
(
0
)
=
0
,
y
′
′
(
0
)
=
0
,
y
′
′
′
(
0
)
=
C
y(0)=0,y'(0)=0,y''(0)=0,y'''(0)=C
y(0)=0,y′(0)=0,y′′(0)=0,y′′′(0)=C,其中
C
C
C为非零常数,由这些初值条件,现将方程
y
(
4
)
−
y
′
′
=
0
y^{(4)}-y''=0
y(4)−y′′=0两边积分得
∫
0
x
y
(
4
)
(
t
)
d
t
−
∫
0
x
y
′
′
(
t
)
d
t
=
0
\displaystyle\int^x_0y^{(4)}(t)\mathrm{d}t-\displaystyle\int^x_0y''(t)\mathrm{d}t=0
∫0xy(4)(t)dt−∫0xy′′(t)dt=0,即
y
′
′
′
(
x
)
−
C
−
y
′
(
x
)
=
0
y'''(x)-C-y'(x)=0
y′′′(x)−C−y′(x)=0,两边再积分得
y
′
′
(
x
)
−
y
(
x
)
=
C
x
y''(x)-y(x)=Cx
y′′(x)−y(x)=Cx。
易知,上述方程有特解
y
∗
=
−
C
x
y^*=-Cx
y∗=−Cx,因此它的通解是
y
=
C
1
e
x
+
C
2
e
−
x
−
C
x
y=C_1e^x+C_2e^{-x}-Cx
y=C1ex+C2e−x−Cx。
由初值
y
(
0
)
=
0
,
y
′
(
0
)
=
0
y(0)=0,y'(0)=0
y(0)=0,y′(0)=0得
C
1
+
C
2
=
0
,
C
1
−
C
2
=
C
C_1+C_2=0,C_1-C_2=C
C1+C2=0,C1−C2=C,即
C
1
=
C
2
,
C
2
=
−
C
2
C_1=\cfrac{C}{2},C_2=-\cfrac{C}{2}
C1=2C,C2=−2C。
故
y
[
1
2
(
e
x
−
e
−
x
)
−
x
]
C
y\left[\cfrac{1}{2}(e^x-e^{-x})-x\right]C
y[21(ex−e−x)−x]C,其中
C
C
C为非零常数。(这道题主要利用了泰勒公式求解)
11.求方程 x 2 d 2 y d x 2 − 2 y = x 2 x^2\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}-2y=x^2 x2dx2d2y−2y=x2的通解。
解 当
x
>
0
x>0
x>0时,令
x
=
e
t
x=e^t
x=et,有
t
=
ln
x
t=\ln x
t=lnx,经计算化原方程为
d
2
y
d
t
2
−
d
y
d
t
−
2
y
=
e
2
t
\cfrac{\mathrm{d}^2y}{\mathrm{d}t^2}-\cfrac{\mathrm{d}y}{\mathrm{d}t}-2y=e^{2t}
dt2d2y−dtdy−2y=e2t,其特征方程为
r
2
−
r
−
2
=
0
r^2-r-2=0
r2−r−2=0,特征根
r
1
=
2
,
r
2
=
−
1
r_1=2,r_2=-1
r1=2,r2=−1,则其齐次方程的通解为
Y
=
C
1
e
2
t
+
C
2
e
−
t
Y=C_1e^{2t}+C_2e^{-t}
Y=C1e2t+C2e−t。设特解
y
∗
=
A
t
e
2
t
y^*=Ate^{2t}
y∗=Ate2t,可得
A
=
1
3
A=\cfrac{1}{3}
A=31。从而得通解为
y
=
C
1
e
2
t
+
C
2
e
−
t
+
1
3
t
e
2
t
=
C
1
x
2
+
C
2
x
+
1
3
x
2
ln
x
y=C_1e^{2t}+C_2e^{-t}+\cfrac{1}{3}te^{2t}=C_1x^2+\cfrac{C_2}{x}+\cfrac{1}{3}x^2\ln x
y=C1e2t+C2e−t+31te2t=C1x2+xC2+31x2lnx。
当
x
<
0
x<0
x<0时,令
x
=
−
u
x=-u
x=−u,原方程化为
y
y
y关于
u
u
u的方程
u
2
d
2
y
d
u
2
−
2
y
=
u
2
u^2\cfrac{\mathrm{d}^2y}{\mathrm{d}u^2}-2y=u^2
u2du2d2y−2y=u2,得通解
y
=
C
1
u
2
+
C
2
u
+
1
3
u
2
ln
u
=
C
1
x
2
−
C
2
x
+
1
3
x
2
ln
(
−
x
)
y=C_1u^2+\cfrac{C_2}{u}+\cfrac{1}{3}u^2\ln u=C_1x^2-\cfrac{C_2}{x}+\cfrac{1}{3}x^2\ln(-x)
y=C1u2+uC2+31u2lnu=C1x2−xC2+31x2ln(−x)。
合并两种情形得原方程的通解为
y
=
C
1
x
2
+
C
2
∣
x
∣
+
1
3
x
2
ln
∣
x
∣
=
C
1
x
2
−
C
2
x
+
1
3
x
2
ln
(
−
x
)
y=C_1x^2+\cfrac{C_2}{|x|}+\cfrac{1}{3}x^2\ln|x|=C_1x^2-\cfrac{C_2}{x}+\cfrac{1}{3}x^2\ln(-x)
y=C1x2+∣x∣C2+31x2ln∣x∣=C1x2−xC2+31x2ln(−x),其中
C
1
,
C
2
C_1,C_2
C1,C2为任意常数。(这道题主要利用了换元法求解)
14.求一条凹曲线,已知其上任意一点处的曲率 k = 1 2 y 2 ∣ cos α ∣ k=\cfrac{1}{2y^2|\cos\alpha|} k=2y2∣cosα∣1,其中 α \alpha α为该曲线在相应点处的切线的倾斜角,且该曲线在 ( 1 , 1 ) (1,1) (1,1)点处的切线为水平方向。
解 由曲率计算公式及曲线为凹知,
k
=
y
′
′
[
1
+
(
y
′
)
2
]
3
2
k=\cfrac{y''}{[1+(y')^2]^{\frac{3}{2}}}
k=[1+(y′)2]23y′′。
因为
α
\alpha
α为曲线在相应点处的切线的倾斜角,所以
∣
cos
α
∣
=
1
∣
sec
α
∣
=
1
1
+
(
y
′
)
2
|\cos\alpha|=\cfrac{1}{|\sec\alpha|}=\cfrac{1}{\sqrt{1+(y')^2}}
∣cosα∣=∣secα∣1=1+(y′)21。
于是,由条件
k
=
1
2
y
2
∣
cos
α
∣
k=\cfrac{1}{2y^2|\cos\alpha|}
k=2y2∣cosα∣1推知,
y
′
′
[
1
+
(
y
′
)
2
]
3
2
=
1
+
(
y
′
)
2
2
y
2
\cfrac{y''}{[1+(y')^2]^{\frac{3}{2}}}=\cfrac{\sqrt{1+(y')^2}}{2y^2}
[1+(y′)2]23y′′=2y21+(y′)2,整理得微分方程
2
y
2
y
′
′
=
[
1
+
(
y
′
)
2
]
2
2y^2y''=[1+(y')^2]^2
2y2y′′=[1+(y′)2]2。
此为缺
x
x
x的可降阶二阶方程。令
p
=
d
y
d
x
,
d
2
y
d
x
2
=
d
p
d
x
=
d
y
d
y
⋅
d
y
d
x
=
p
d
p
d
y
p=\cfrac{\mathrm{d}y}{\mathrm{d}x},\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=\cfrac{\mathrm{d}p}{\mathrm{d}x}=\cfrac{\mathrm{d}y}{\mathrm{d}y}\cdot\cfrac{\mathrm{d}y}{\mathrm{d}x}=p\cfrac{\mathrm{d}p}{\mathrm{d}y}
p=dxdy,dx2d2y=dxdp=dydy⋅dxdy=pdydp,代入上述微分方程,化简为
2
y
2
p
d
p
d
y
=
(
1
+
p
2
)
2
2y^2p\cfrac{\mathrm{d}p}{\mathrm{d}y}=(1+p^2)^2
2y2pdydp=(1+p2)2。分离变量得
2
p
d
p
(
1
+
p
2
)
2
=
d
y
y
2
\cfrac{2p\mathrm{d}p}{(1+p^2)^2}=\cfrac{\mathrm{d}y}{y^2}
(1+p2)22pdp=y2dy,解得
y
=
(
p
2
+
1
)
+
y
(
p
2
+
1
)
C
1
y=(p^2+1)+y(p^2+1)C_1
y=(p2+1)+y(p2+1)C1。由于曲线在点
(
1
,
1
)
(1,1)
(1,1)处切线水平,故
y
(
1
)
=
1
,
y
′
(
1
)
=
0
y(1)=1,y'(1)=0
y(1)=1,y′(1)=0。于是有
1
=
1
+
C
1
,
C
1
=
0
1=1+C_1,C_1=0
1=1+C1,C1=0。故得
y
=
p
2
+
1
y=p^2+1
y=p2+1,即
d
y
d
x
=
±
y
−
1
\cfrac{\mathrm{d}y}{\mathrm{d}x}=\pm\sqrt{y-1}
dxdy=±y−1。由于曲线是凹的,
y
=
1
y=1
y=1不是解,再将
d
y
d
x
=
±
y
−
1
\cfrac{\mathrm{d}y}{\mathrm{d}x}=\pm\sqrt{y-1}
dxdy=±y−1分离变量后积分得
±
y
−
1
=
x
+
C
2
\pm\sqrt{y-1}=x+C_2
±y−1=x+C2。
由
y
(
1
)
=
1
y(1)=1
y(1)=1,所以
C
2
=
−
1
C_2=-1
C2=−1,得
±
y
−
1
=
x
−
1
\pm\sqrt{y-1}=x-1
±y−1=x−1,化简得
4
(
y
−
1
)
=
(
x
−
1
)
2
4(y-1)=(x-1)^2
4(y−1)=(x−1)2。(这道题主要利用了曲率求解)
写在最后
如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
欢迎非商业转载,转载请注明出处。