张宇1000题高等数学 第十五章 微分方程

本文精选了多个微分方程题目,涵盖一阶、二阶及高阶微分方程,包括线性、非线性、伯努利方程等类型,详细解析了求解过程,展示了换元法、积分法、泰勒公式等多种解题技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

A A A

10.微分方程 ( 1 + x 2 ) y ′ ′ − 2 x y ′ = 0 (1+x^2)y''-2xy'=0 (1+x2)y2xy=0的通解为______。

  令 y ′ = p y'=p y=p,则方程 ( 1 + x 2 ) y ′ ′ − 2 x y ′ = 0 (1+x^2)y''-2xy'=0 (1+x2)y2xy=0化为 p ′ = 2 x 1 + x 2 p p'=\cfrac{2x}{1+x^2}p p=1+x22xp,两端分别积分 ∫ d p p = ∫ 2 x 1 + x 2 d x \displaystyle\int\cfrac{\mathrm{d}p}{p}=\displaystyle\int\cfrac{2x}{1+x^2}\mathrm{d}x pdp=1+x22xdx,得 ln ⁡ ∣ p ∣ = ln ⁡ ( 1 + x 2 ) + C 0 \ln|p|=\ln(1+x^2)+C_0 lnp=ln(1+x2)+C0,即 y ′ = C 1 ( 1 + x 2 ) y'=C_1(1+x^2) y=C1(1+x2)。积分可得 y = C 1 ( x + x 3 3 ) + C 2 y=C_1\left(x+\cfrac{x^3}{3}\right)+C_2 y=C1(x+3x3)+C2,其中 C 1 C_1 C1为非零常数, C 2 C_2 C2为任意常数。(这道题主要利用了换元法求解

B B B

2.微分方程 d y d x = 2 x y x 2 + y \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{2xy}{x^2+y} dxdy=x2+y2xy的通解为______。

  原方程改写为 d x d y = x 2 + y 2 x y = x 2 y + 1 2 x \cfrac{\mathrm{d}x}{\mathrm{d}y}=\cfrac{x^2+y}{2xy}=\cfrac{x}{2y}+\cfrac{1}{2x} dydx=2xyx2+y=2yx+2x1,这是一个伯努利方程。令 z = x 2 z=x^2 z=x2,有 d z d y − z y = 1 \cfrac{\mathrm{d}z}{\mathrm{d}y}-\cfrac{z}{y}=1 dydzyz=1,得 x 2 = z = e ∫ 1 y d y ( ∫ e − ∫ 1 y d y d y + C ) = y ( ln ⁡ ∣ y ∣ + C ) x^2=z=e^{\int\frac{1}{y}\mathrm{d}y}\left(\displaystyle\int e^{-\int\frac{1}{y}\mathrm{d}y}\mathrm{d}y+C\right)=y(\ln|y|+C) x2=z=ey1dy(ey1dydy+C)=y(lny+C),其中 C C C为任意常数。(这道题主要利用了伯努利方程求解

3.微分方程 y d x − x d y = x 2 y d y y\mathrm{d}x-x\mathrm{d}y=x^2y\mathrm{d}y ydxxdy=x2ydy的通解为______。

  将方程改写为 y d y − y d x − x d y x 2 = 0 y\mathrm{d}y-\cfrac{y\mathrm{d}x-x\mathrm{d}y}{x^2}=0 ydyx2ydxxdy=0,此为全微分方程,即 d ( y 2 2 + y x ) = 0 \mathrm{d}\left(\cfrac{y^2}{2}+\cfrac{y}{x}\right)=0 d(2y2+xy)=0。通解为 y 2 2 + y x = C \cfrac{y^2}{2}+\cfrac{y}{x}=C 2y2+xy=C,其中 C C C为任意常数。

10.设 a > 0 a>0 a>0,函数 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+)内连续有界,证明:微分方程 y ′ + a y = f ( x ) y'+ay=f(x) y+ay=f(x)的解在 [ 0 , + ∞ ) [0,+\infty) [0,+)内有界。

  原方程的通解为 y ( x ) = e − a x [ C + ∫ 0 x f ( t ) e a t d t ] y(x)=e^{-ax}\left[C+\displaystyle\int^x_0f(t)e^{at}\mathrm{d}t\right] y(x)=eax[C+0xf(t)eatdt],其中 C C C为任意常数。
  因 f ( x ) f(x) f(x) [ 0 , + ∞ ) [0,+\infty) [0,+)内有界,设 ∣ f ( x ) ∣ ⩽ M |f(x)|\leqslant M f(x)M,则当 x ⩾ 0 x\geqslant0 x0时,有
∣ y ( x ) ∣ = ∣ e − a x [ C + ∫ 0 x f ( t ) e a t d t ] ∣ ⩽ ∣ C e − a x ∣ + e − a x ∣ ∫ 0 x f ( t ) e a t d t ∣ ⩽ ∣ C ∣ + M e − a x ∫ 0 x e a t d t = ∣ C ∣ + M a ( 1 − e − a x ) ⩽ ∣ C ∣ + M a . \begin{aligned} |y(x)|&=\left|e^{-ax}\left[C+\displaystyle\int^x_0f(t)e^{at}\mathrm{d}t\right]\right|\leqslant\left|Ce^{-ax}\right|+e^{-ax}\left|\displaystyle\int^x_0f(t)e^{at}\mathrm{d}t\right|\\ &\leqslant|C|+Me^{-ax}\displaystyle\int^x_0e^{at}\mathrm{d}t=|C|+\cfrac{M}{a}(1-e^{-ax})\leqslant|C|+\cfrac{M}{a}. \end{aligned} y(x)=eax[C+0xf(t)eatdt]Ceax+eax0xf(t)eatdtC+Meax0xeatdt=C+aM(1eax)C+aM.
  即 y ( x ) y(x) y(x) [ 0 , + ∞ ) [0,+\infty) [0,+)内有界。(这道题主要利用了放缩法求解

18.求 ( 5 x 2 y 3 − 2 x ) y ′ + y = 0 (5x^2y^3-2x)y'+y=0 (5x2y32x)y+y=0的通解。

  交换 x , y x,y x,y地位,认定 x x x y y y的函数,则原方程化为 − y d x d y + 2 x = 5 x 2 y 3 -y\cfrac{\mathrm{d}x}{\mathrm{d}y}+2x=5x^2y^3 ydydx+2x=5x2y3,是 n = 2 n=2 n=2的伯努利方程。令 z = x 1 − 2 = 1 x z=x^{1-2}=\cfrac{1}{x} z=x12=x1,则上述方程可化为 y d z d y + 2 z = 5 y 3 y\cfrac{\mathrm{d}z}{\mathrm{d}y}+2z=5y^3 ydydz+2z=5y3,进一步化为一阶线性微分方程的标准形式 d z d y + 2 y z = 5 y 2 \cfrac{\mathrm{d}z}{\mathrm{d}y}+\cfrac{2}{y}z=5y^2 dydz+y2z=5y2。由通解公式得 z = e − ∫ 2 y d y ( ∫ 5 y 2 e ∫ 2 y d y d y + C ) = 1 y 2 ( ∫ 5 y 2 ⋅ y 2 d y + C ) = y 3 + C y 2 z=e^{-\int\frac{2}{y}\mathrm{d}y}\left(\displaystyle\int5y^2e^{\int\frac{2}{y}\mathrm{d}y}\mathrm{d}y+C\right)=\cfrac{1}{y^2}\left(\displaystyle\int5y^2\cdot y^2\mathrm{d}y+C\right)=y^3+\cfrac{C}{y^2} z=ey2dy(5y2ey2dydy+C)=y21(5y2y2dy+C)=y3+y2C,故原方程的通解为 1 x = y 3 + C y 2 \cfrac{1}{x}=y^3+\cfrac{C}{y^2} x1=y3+y2C,其中 C C C为任意常数。(这道题主要利用了伯努利方程求解

25.设 f ( x ) f(x) f(x)在区间 [ 0 , + ∞ ) [0,+\infty) [0,+)上具有连续的一阶导数,且满足 f ( 0 ) = 1 f(0)=1 f(0)=1 f ′ ( x ) + f ( x ) − 1 1 + x ∫ 0 x f ( t ) d t = 0 f'(x)+f(x)-\cfrac{1}{1+x}\displaystyle\int^x_0f(t)\mathrm{d}t=0 f(x)+f(x)1+x10xf(t)dt=0

(1)求导函数 f ′ ( x ) f'(x) f(x)

  由题设可知 f ′ ( 0 ) + f ( 0 ) = 0 f'(0)+f(0)=0 f(0)+f(0)=0,即 f ′ ( 0 ) = − f ( 0 ) = − 1 f'(0)=-f(0)=-1 f(0)=f(0)=1,且 ( x + 1 ) [ f ′ ( x ) + f ( x ) ] = ∫ 0 x f ( t ) d t ( x ⩾ 0 ) (x+1)[f'(x)+f(x)]=\displaystyle\int^x_0f(t)\mathrm{d}t(x\geqslant0) (x+1)[f(x)+f(x)]=0xf(t)dt(x0)
  将上式两端对 x x x求导并整理,得 ( x + 1 ) f ′ ′ ( x ) + ( x + 2 ) f ′ ( x ) = 0 (x+1)f''(x)+(x+2)f'(x)=0 (x+1)f(x)+(x+2)f(x)=0,这是以 f ′ ( x ) f'(x) f(x)为未知函数的变量可分离的方程,故可求其通解为 f ′ ( x ) = C e − x 1 + x f'(x)=C\cfrac{e^{-x}}{1+x} f(x)=C1+xex
  代入初值条件 f ′ ( 0 ) = − 1 f'(0)=-1 f(0)=1,得 C = − 1 C=-1 C=1,所以 f ′ ( x ) = − e − x 1 + x ( x ⩾ 0 ) f'(x)=-\cfrac{e^{-x}}{1+x}(x\geqslant0) f(x)=1+xex(x0)

(2)证明:当 x > 0 x>0 x>0时,有 e − x < f ( x ) < 1 e^{-x}<f(x)<1 ex<f(x)<1

  对 f ( x ) f(x) f(x)在区间 [ 0 , x ] [0,x] [0,x]上应用拉格朗日中值定理,得 f ( x ) − f ( 0 ) = x f ′ ( ξ ) = − x e − ξ 1 + ξ ( 0 < ξ < x ) f(x)-f(0)=xf'(\xi)=-x\cfrac{e^{-\xi}}{1+\xi}(0<\xi<x) f(x)f(0)=xf(ξ)=x1+ξeξ(0<ξ<x),所以 f ( x ) < f ( 0 ) = 1 f(x)<f(0)=1 f(x)<f(0)=1
  为了证明 e − x < f ( x ) e^{-x}<f(x) ex<f(x),构造辅助函数 F ( x ) = f ( x ) − e − x F(x)=f(x)-e^{-x} F(x)=f(x)ex。因为 F ′ ( x ) = f ′ ( x ) + e − x = − e − x 1 + x + e − x = x e − x 1 + x F'(x)=f'(x)+e^{-x}=-\cfrac{e^{-x}}{1+x}+e^{-x}=\cfrac{xe^{-x}}{1+x} F(x)=f(x)+ex=1+xex+ex=1+xxex,所以函数 F ( x ) F(x) F(x)在区间 [ 0 , + ∞ ) [0,+\infty) [0,+)上单调递增,故当 x > 0 x>0 x>0时, F ( x ) > F ( 0 ) = 0 F(x)>F(0)=0 F(x)>F(0)=0,即 f ( x ) > e − x f(x)>e^{-x} f(x)>ex。(这道题主要利用了构造函数求解

26.求微分方程 { y ′ ′ + y = x , x ⩽ π 2 , y ′ ′ + 4 y = 0 , x > π 4 \begin{cases}y''+y=x,&x\leqslant\cfrac{\pi}{2},\\y''+4y=0,&x>\cfrac{\pi}{4}\end{cases} y+y=x,y+4y=0,x2π,x>4π满足条件 y ∣ x = 0 = 0 , y ′ ∣ x = 0 = 0 y\biggm\vert_{x=0}=0,y'\biggm\vert_{x=0}=0 yx=0=0,yx=0=0且在 x = π 2 x=\cfrac{\pi}{2} x=2π处可导的特解。

  先求解当 x ⩽ π 2 x\leqslant\cfrac{\pi}{2} x2π时的初值问题 { y ′ ′ + y = x , y ( 0 ) = y ′ ( 0 ) = 0. \begin{cases}y''+y=x,\\y(0)=y'(0)=0.\end{cases} {y+y=x,y(0)=y(0)=0.
  易知,方程 y ′ ′ + y = x y''+y=x y+y=x的通解为 y = C 1 cos ⁡ x + C 2 sin ⁡ x + x y=C_1\cos x+C_2\sin x+x y=C1cosx+C2sinx+x。根据条件 y ( 0 ) = y ′ ( 0 ) = 0 y(0)=y'(0)=0 y(0)=y(0)=0可解得 C 1 = 0 , C 2 = − 1 C_1=0,C_2=-1 C1=0,C2=1,所以相应的特解为 y = x − sin ⁡ x ( x ⩽ π 2 ) y=x-\sin x\left(x\leqslant\cfrac{\pi}{2}\right) y=xsinx(x2π),此时,有 y ∣ x = π 2 = π 2 − 1 , y ′ ∣ x = π 2 = 1 y\biggm\vert_{x=\frac{\pi}{2}}=\cfrac{\pi}{2}-1,y'\biggm\vert_{x=\frac{\pi}{2}}=1 yx=2π=2π1,yx=2π=1
  进一步,当 x > π 2 x>\cfrac{\pi}{2} x>2π时,欲使所求的解在 x = π 2 x=\cfrac{\pi}{2} x=2π处可导(因而必连续),这就归结为求解新的初值问题 { y ′ ′ + 4 y = 0 , y ∣ x = π 2 = π 2 − 1 , y ′ ∣ x = π 2 = 1 \begin{cases}y''+4y=0,\\y\biggm\vert_{x=\frac{\pi}{2}}=\cfrac{\pi}{2}-1,y'\biggm\vert_{x=\frac{\pi}{2}}=1\end{cases} y+4y=0,yx=2π=2π1,yx=2π=1。易知,方程 y ′ ′ + 4 y = 0 y''+4y=0 y+4y=0的通解为 y = C 3 cos ⁡ 2 x + C 4 sin ⁡ 2 x y=C_3\cos2x+C_4\sin2x y=C3cos2x+C4sin2x。再由初始条件 y ∣ x = π 2 = π 2 − 1 , y ′ ∣ x = π 2 = 1 y\biggm\vert_{x=\frac{\pi}{2}}=\cfrac{\pi}{2}-1,y'\biggm\vert_{x=\frac{\pi}{2}}=1 yx=2π=2π1,yx=2π=1可解得 C 3 = 1 − π 2 , C 4 = − π 2 C_3=1-\cfrac{\pi}{2},C_4=-\cfrac{\pi}{2} C3=12π,C4=2π。所以相应的特解为 y = ( 1 − π 2 ) cos ⁡ 2 x − 1 2 sin ⁡ 2 x ( x > π 2 ) y=\left(1-\cfrac{\pi}{2}\right)\cos2x-\cfrac{1}{2}\sin2x\left(x>\cfrac{\pi}{2}\right) y=(12π)cos2x21sin2x(x>2π)
  因此,原方程满足所给条件的特解为 y = { x − sin ⁡ x , x ⩽ π 2 , ( 1 − π 2 ) cos ⁡ 2 x − 1 2 sin ⁡ 2 x , x > π 2 . y=\begin{cases}x-\sin x,&x\leqslant\cfrac{\pi}{2},\\\left(1-\cfrac{\pi}{2}\right)\cos2x-\cfrac{1}{2}\sin2x,&x>\cfrac{\pi}{2}.\end{cases} y=xsinx,(12π)cos2x21sin2x,x2π,x>2π.
  可以验证所求函数 y y y x = π 2 x=\cfrac{\pi}{2} x=2π处可导。(这道题主要利用了分段函数求解

27.已知平面上的曲线 y = f ( x ) y=f(x) y=f(x)与曲线 ∫ 0 x 2 + y e − t 2 d t = 2 y − x cos ⁡ x \displaystyle\int^{x^2+y}_0e^{-t^2}\mathrm{d}t=2y-x\cos x 0x2+yet2dt=2yxcosx相切于点 ( 0 , 0 ) (0,0) (0,0),且 f ( x ) f(x) f(x)满足微分方程 y ′ ′ − 2 y ′ − 3 y = 3 x − 1 y''-2y'-3y=3x-1 y2y3y=3x1。求函数 f ( x ) f(x) f(x)

  记 y = g ( x ) y=g(x) y=g(x)是由方程 ∫ 0 x 2 + y e − t 2 d t = 2 y − x cos ⁡ x \displaystyle\int^{x^2+y}_0e^{-t^2}\mathrm{d}t=2y-x\cos x 0x2+yet2dt=2yxcosx相确定的隐函数。对方程两边关于 x x x求导,并利用隐函数求导法则,及积分上限函数的求导法则,有 e − ( x 2 + y ) 2 ( 2 x + y ′ ) = 2 y ′ − cos ⁡ x + x sin ⁡ x e^{-(x^2+y)^2}(2x+y')=2y'-\cos x+x\sin x e(x2+y)2(2x+y)=2ycosx+xsinx
  将 x = 0 , y = 0 x=0,y=0 x=0,y=0代入上式,可得 y ′ ( 0 ) = 1 y'(0)=1 y(0)=1,即 g ′ ( 0 ) = 1 g'(0)=1 g(0)=1
  因为两曲线都经过点 ( 0 , 0 ) (0,0) (0,0)且在该点处具有公切线,所以 f ( 0 ) = 0 , f ′ ( 0 ) = g ′ ( 0 ) = 1 f(0)=0,f'(0)=g'(0)=1 f(0)=0,f(0)=g(0)=1。因此,函数 f ( x ) f(x) f(x)是初值问题 { y ′ ′ − 2 y ′ − 3 y = 3 x − 1 , y ∣ x = 0 = 0 , y ′ ∣ x = 0 = 1 \begin{cases}y''-2y'-3y=3x-1,\\y\biggm|_{x=0}=0,y'\biggm|_{x=0}=1\end{cases} y2y3y=3x1,yx=0=0,yx=0=1的解。下面先求方程 y ′ ′ − 2 y ′ − 3 y = 3 x − 1 y''-2y'-3y=3x-1 y2y3y=3x1的通解。
  对应齐次方程的特征方程 r 2 − 2 r − 3 = 0 r^2-2r-3=0 r22r3=0有互异根 r 1 = − 1 , r 2 = 3 r_1=-1,r_2=3 r1=1,r2=3,则齐次方程的通解为 Y = C 1 e − x + C 2 e 3 x Y=C_1e^{-x}+C_2e^{3x} Y=C1ex+C2e3x。非齐次方程的自由项 3 x − 1 3x-1 3x1,写成 P m ( x ) e λ x P_m(x)e^{\lambda x} Pm(x)eλx的形式,应有 P 1 ( x ) = 3 x − 1 , λ = 0 P_1(x)=3x-1,\lambda=0 P1(x)=3x1,λ=0。而 λ = 0 \lambda=0 λ=0不是特征方程的根,故应设特解为 y ∗ = a x + b y^*=ax+b y=ax+b。代入原方程,解得 a = − 1 , b = 1 a=-1,b=1 a=1,b=1,则 y ∗ = − x + 1 y^*=-x+1 y=x+1。因此,方程的通解为 f ( x ) = Y + y ∗ = C 1 e − x + C 2 e 3 x − x + 1 f(x)=Y+y^*=C_1e^{-x}+C_2e^{3x}-x+1 f(x)=Y+y=C1ex+C2e3xx+1
  最后,由 f ( 0 ) = 0 , f ′ ( 0 ) = 1 f(0)=0,f'(0)=1 f(0)=0,f(0)=1解得 C 1 = − 5 4 , C 2 = 1 4 C_1=-\cfrac{5}{4},C_2=\cfrac{1}{4} C1=45,C2=41,所以 f ( x ) = − 5 4 e − x + 1 4 e 3 x − x + 1 f(x)=-\cfrac{5}{4}e^{-x}+\cfrac{1}{4}e^{3x}-x+1 f(x)=45ex+41e3xx+1。(这道题主要利用了积分上限函数的求导法则求解

C C C

1.微分方程 d 2 y d x 2 + ( x + sin ⁡ y ) ( d y d x ) 3 = 0 \cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}+(x+\sin y)\left(\cfrac{\mathrm{d}y}{\mathrm{d}x}\right)^3=0 dx2d2y+(x+siny)(dxdy)3=0满足初值条件 y ( 0 ) = 0 , y ′ ( 0 ) = 2 3 y(0)=0,y'(0)=\cfrac{2}{3} y(0)=0,y(0)=32的特解是______。

  由反函数的求导法则 d y d x = 1 d x d y , d 2 y d x 2 = − d 2 x d y 2 ( d x d y ) 3 \cfrac{\mathrm{d}y}{\mathrm{d}x}=\cfrac{1}{\cfrac{\mathrm{d}x}{\mathrm{d}y}},\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=-\cfrac{\cfrac{\mathrm{d}^2x}{\mathrm{d}y^2}}{\left(\cfrac{\mathrm{d}x}{\mathrm{d}y}\right)^3} dxdy=dydx1,dx2d2y=(dydx)3dy2d2x可知,原方程可化为 x x x关于 y y y的二阶常系数线性方程。将两式代入原方程,原方程化为 d 2 x d y 2 − x = sin ⁡ y \cfrac{\mathrm{d}^2x}{\mathrm{d}y^2}-x=\sin y dy2d2xx=siny,解得 x x x关于 y y y的通解为 x = C 1 e y + C 2 e − y − 1 2 sin ⁡ y x=C_1e^y+C_2e^{-y}-\cfrac{1}{2}\sin y x=C1ey+C2ey21siny,当 x = 0 x=0 x=0时, y = 0 y=0 y=0,代入得 C 1 + C 2 = 0 C_1+C_2=0 C1+C2=0。将上式对 y y y两边求导,有 d x d y = C 1 e y − C 2 e − y − 1 2 cos ⁡ y \cfrac{\mathrm{d}x}{\mathrm{d}y}=C_1e^y-C_2e^{-y}-\cfrac{1}{2}\cos y dydx=C1eyC2ey21cosy,当 x = 0 x=0 x=0时, d x d y = 1 d y d x = 3 2 \cfrac{\mathrm{d}x}{\mathrm{d}y}=\cfrac{1}{\cfrac{\mathrm{d}y}{\mathrm{d}x}}=\cfrac{3}{2} dydx=dxdy1=23,代入上式,有 3 2 = C 1 − C 2 − 1 2 \cfrac{3}{2}=C_1-C_2-\cfrac{1}{2} 23=C1C221,解得 C 1 = 1 , C 2 = − 1 C_1=1,C_2=-1 C1=1,C2=1
  于是得特解 x = e y − e − y − 1 2 sin ⁡ y x=e^y-e^{-y}-\cfrac{1}{2}\sin y x=eyey21siny。(这道题主要利用了反函数的求导法则求解

4.已知 y = f ( x ) y=f(x) y=f(x)是微分方程 x y ′ − y = 2 x − x 2 xy'-y=\sqrt{2x-x^2} xyy=2xx2 满足初值条件 f ( 1 ) = 0 f(1)=0 f(1)=0的特解。则 ∫ 0 1 f ( x ) d x = \displaystyle\int^1_0f(x)\mathrm{d}x= 01f(x)dx=______。


∫ 0 1 f ( x ) d x = x f ( x ) ∣ 0 1 − ∫ 0 1 x f ′ ( x ) d x = − ∫ 0 1 [ f ( x ) + 2 x − x 2 ] d x = − ∫ 0 1 f ( x ) d x − ∫ 0 1 2 x − x 2 d x , ∫ 0 1 f ( x ) d x = − 1 2 ∫ 0 1 2 x − x 2 d x = − 1 2 ∫ 0 1 1 − ( x − 1 ) 2 d x = x − 1 = sin ⁡ t − 1 2 ∫ 0 1 cos ⁡ 2 t d t = − π 8 . \begin{aligned} \displaystyle\int^1_0f(x)\mathrm{d}x&=xf(x)\biggm\vert^1_0-\displaystyle\int^1_0xf'(x)\mathrm{d}x=-\displaystyle\int^1_0[f(x)+\sqrt{2x-x^2}]\mathrm{d}x\\ &=-\displaystyle\int^1_0f(x)\mathrm{d}x-\displaystyle\int^1_0\sqrt{2x-x^2}\mathrm{d}x, \end{aligned}\\ \begin{aligned} \displaystyle\int^1_0f(x)\mathrm{d}x&=-\cfrac{1}{2}\displaystyle\int^1_0\sqrt{2x-x^2}\mathrm{d}x=-\cfrac{1}{2}\displaystyle\int^1_0\sqrt{1-(x-1)^2}\mathrm{d}x\\ &\xlongequal{x-1=\sin t}-\cfrac{1}{2}\displaystyle\int^1_0\cos^2t\mathrm{d}t=-\cfrac{\pi}{8}. \end{aligned} 01f(x)dx=xf(x)0101xf(x)dx=01[f(x)+2xx2 ]dx=01f(x)dx012xx2 dx,01f(x)dx=21012xx2 dx=21011(x1)2 dxx1=sint 2101cos2tdt=8π.
这道题主要利用了分部积分法求解

8.设 y ( x ) y(x) y(x)是方程 y ( 4 ) − y ′ ′ = 0 y^{(4)}-y''=0 y(4)y=0的解,且当 x → 0 x\to0 x0时, y ( x ) y(x) y(x) x x x 3 3 3阶无穷小,求 y ( x ) y(x) y(x)

  由泰勒公式 y ( x ) = y ( 0 ) + y ′ ( 0 ) x + 1 2 y ′ ′ ( 0 ) x 2 + 1 3 ! y ′ ′ ′ ( 0 ) x 3 + ο ( x 3 ) ( x → 0 ) y(x)=y(0)+y'(0)x+\cfrac{1}{2}y''(0)x^2+\cfrac{1}{3!}y'''(0)x^3+\omicron(x^3)(x\to0) y(x)=y(0)+y(0)x+21y(0)x2+3!1y(0)x3+ο(x3)(x0)。当 x → 0 x\to0 x0时, y ( x ) y(x) y(x) x 3 x^3 x3同阶,则 y ( 0 ) = 0 , y ′ ( 0 ) = 0 , y ′ ′ ( 0 ) = 0 , y ′ ′ ′ ( 0 ) = C y(0)=0,y'(0)=0,y''(0)=0,y'''(0)=C y(0)=0,y(0)=0,y(0)=0,y(0)=C,其中 C C C为非零常数,由这些初值条件,现将方程 y ( 4 ) − y ′ ′ = 0 y^{(4)}-y''=0 y(4)y=0两边积分得 ∫ 0 x y ( 4 ) ( t ) d t − ∫ 0 x y ′ ′ ( t ) d t = 0 \displaystyle\int^x_0y^{(4)}(t)\mathrm{d}t-\displaystyle\int^x_0y''(t)\mathrm{d}t=0 0xy(4)(t)dt0xy(t)dt=0,即 y ′ ′ ′ ( x ) − C − y ′ ( x ) = 0 y'''(x)-C-y'(x)=0 y(x)Cy(x)=0,两边再积分得 y ′ ′ ( x ) − y ( x ) = C x y''(x)-y(x)=Cx y(x)y(x)=Cx
  易知,上述方程有特解 y ∗ = − C x y^*=-Cx y=Cx,因此它的通解是 y = C 1 e x + C 2 e − x − C x y=C_1e^x+C_2e^{-x}-Cx y=C1ex+C2exCx
  由初值 y ( 0 ) = 0 , y ′ ( 0 ) = 0 y(0)=0,y'(0)=0 y(0)=0,y(0)=0 C 1 + C 2 = 0 , C 1 − C 2 = C C_1+C_2=0,C_1-C_2=C C1+C2=0,C1C2=C,即 C 1 = C 2 , C 2 = − C 2 C_1=\cfrac{C}{2},C_2=-\cfrac{C}{2} C1=2C,C2=2C
  故 y [ 1 2 ( e x − e − x ) − x ] C y\left[\cfrac{1}{2}(e^x-e^{-x})-x\right]C y[21(exex)x]C,其中 C C C为非零常数。(这道题主要利用了泰勒公式求解

11.求方程 x 2 d 2 y d x 2 − 2 y = x 2 x^2\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}-2y=x^2 x2dx2d2y2y=x2的通解。

  当 x > 0 x>0 x>0时,令 x = e t x=e^t x=et,有 t = ln ⁡ x t=\ln x t=lnx,经计算化原方程为 d 2 y d t 2 − d y d t − 2 y = e 2 t \cfrac{\mathrm{d}^2y}{\mathrm{d}t^2}-\cfrac{\mathrm{d}y}{\mathrm{d}t}-2y=e^{2t} dt2d2ydtdy2y=e2t,其特征方程为 r 2 − r − 2 = 0 r^2-r-2=0 r2r2=0,特征根 r 1 = 2 , r 2 = − 1 r_1=2,r_2=-1 r1=2,r2=1,则其齐次方程的通解为 Y = C 1 e 2 t + C 2 e − t Y=C_1e^{2t}+C_2e^{-t} Y=C1e2t+C2et。设特解 y ∗ = A t e 2 t y^*=Ate^{2t} y=Ate2t,可得 A = 1 3 A=\cfrac{1}{3} A=31。从而得通解为 y = C 1 e 2 t + C 2 e − t + 1 3 t e 2 t = C 1 x 2 + C 2 x + 1 3 x 2 ln ⁡ x y=C_1e^{2t}+C_2e^{-t}+\cfrac{1}{3}te^{2t}=C_1x^2+\cfrac{C_2}{x}+\cfrac{1}{3}x^2\ln x y=C1e2t+C2et+31te2t=C1x2+xC2+31x2lnx
  当 x < 0 x<0 x<0时,令 x = − u x=-u x=u,原方程化为 y y y关于 u u u的方程 u 2 d 2 y d u 2 − 2 y = u 2 u^2\cfrac{\mathrm{d}^2y}{\mathrm{d}u^2}-2y=u^2 u2du2d2y2y=u2,得通解 y = C 1 u 2 + C 2 u + 1 3 u 2 ln ⁡ u = C 1 x 2 − C 2 x + 1 3 x 2 ln ⁡ ( − x ) y=C_1u^2+\cfrac{C_2}{u}+\cfrac{1}{3}u^2\ln u=C_1x^2-\cfrac{C_2}{x}+\cfrac{1}{3}x^2\ln(-x) y=C1u2+uC2+31u2lnu=C1x2xC2+31x2ln(x)
  合并两种情形得原方程的通解为 y = C 1 x 2 + C 2 ∣ x ∣ + 1 3 x 2 ln ⁡ ∣ x ∣ = C 1 x 2 − C 2 x + 1 3 x 2 ln ⁡ ( − x ) y=C_1x^2+\cfrac{C_2}{|x|}+\cfrac{1}{3}x^2\ln|x|=C_1x^2-\cfrac{C_2}{x}+\cfrac{1}{3}x^2\ln(-x) y=C1x2+xC2+31x2lnx=C1x2xC2+31x2ln(x),其中 C 1 , C 2 C_1,C_2 C1,C2为任意常数。(这道题主要利用了换元法求解

14.求一条凹曲线,已知其上任意一点处的曲率 k = 1 2 y 2 ∣ cos ⁡ α ∣ k=\cfrac{1}{2y^2|\cos\alpha|} k=2y2cosα1,其中 α \alpha α为该曲线在相应点处的切线的倾斜角,且该曲线在 ( 1 , 1 ) (1,1) (1,1)点处的切线为水平方向。

  由曲率计算公式及曲线为凹知, k = y ′ ′ [ 1 + ( y ′ ) 2 ] 3 2 k=\cfrac{y''}{[1+(y')^2]^{\frac{3}{2}}} k=[1+(y)2]23y
  因为 α \alpha α为曲线在相应点处的切线的倾斜角,所以 ∣ cos ⁡ α ∣ = 1 ∣ sec ⁡ α ∣ = 1 1 + ( y ′ ) 2 |\cos\alpha|=\cfrac{1}{|\sec\alpha|}=\cfrac{1}{\sqrt{1+(y')^2}} cosα=secα1=1+(y)2 1
  于是,由条件 k = 1 2 y 2 ∣ cos ⁡ α ∣ k=\cfrac{1}{2y^2|\cos\alpha|} k=2y2cosα1推知, y ′ ′ [ 1 + ( y ′ ) 2 ] 3 2 = 1 + ( y ′ ) 2 2 y 2 \cfrac{y''}{[1+(y')^2]^{\frac{3}{2}}}=\cfrac{\sqrt{1+(y')^2}}{2y^2} [1+(y)2]23y=2y21+(y)2 ,整理得微分方程 2 y 2 y ′ ′ = [ 1 + ( y ′ ) 2 ] 2 2y^2y''=[1+(y')^2]^2 2y2y=[1+(y)2]2
  此为缺 x x x的可降阶二阶方程。令 p = d y d x , d 2 y d x 2 = d p d x = d y d y ⋅ d y d x = p d p d y p=\cfrac{\mathrm{d}y}{\mathrm{d}x},\cfrac{\mathrm{d}^2y}{\mathrm{d}x^2}=\cfrac{\mathrm{d}p}{\mathrm{d}x}=\cfrac{\mathrm{d}y}{\mathrm{d}y}\cdot\cfrac{\mathrm{d}y}{\mathrm{d}x}=p\cfrac{\mathrm{d}p}{\mathrm{d}y} p=dxdy,dx2d2y=dxdp=dydydxdy=pdydp,代入上述微分方程,化简为 2 y 2 p d p d y = ( 1 + p 2 ) 2 2y^2p\cfrac{\mathrm{d}p}{\mathrm{d}y}=(1+p^2)^2 2y2pdydp=(1+p2)2。分离变量得 2 p d p ( 1 + p 2 ) 2 = d y y 2 \cfrac{2p\mathrm{d}p}{(1+p^2)^2}=\cfrac{\mathrm{d}y}{y^2} (1+p2)22pdp=y2dy,解得 y = ( p 2 + 1 ) + y ( p 2 + 1 ) C 1 y=(p^2+1)+y(p^2+1)C_1 y=(p2+1)+y(p2+1)C1。由于曲线在点 ( 1 , 1 ) (1,1) (1,1)处切线水平,故 y ( 1 ) = 1 , y ′ ( 1 ) = 0 y(1)=1,y'(1)=0 y(1)=1,y(1)=0。于是有 1 = 1 + C 1 , C 1 = 0 1=1+C_1,C_1=0 1=1+C1,C1=0。故得 y = p 2 + 1 y=p^2+1 y=p2+1,即 d y d x = ± y − 1 \cfrac{\mathrm{d}y}{\mathrm{d}x}=\pm\sqrt{y-1} dxdy=±y1 。由于曲线是凹的, y = 1 y=1 y=1不是解,再将 d y d x = ± y − 1 \cfrac{\mathrm{d}y}{\mathrm{d}x}=\pm\sqrt{y-1} dxdy=±y1 分离变量后积分得 ± y − 1 = x + C 2 \pm\sqrt{y-1}=x+C_2 ±y1 =x+C2
  由 y ( 1 ) = 1 y(1)=1 y(1)=1,所以 C 2 = − 1 C_2=-1 C2=1,得 ± y − 1 = x − 1 \pm\sqrt{y-1}=x-1 ±y1 =x1,化简得 4 ( y − 1 ) = ( x − 1 ) 2 4(y-1)=(x-1)^2 4(y1)=(x1)2。(这道题主要利用了曲率求解

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值