线性代数张宇9讲 第二讲 行列式的综合计算与应用

例题二

例2.15  设 ξ = [ a 1 , a 2 , ⋯   , a n ] T , ξ T ξ = ∑ i = 1 n a i 2 = 1 \bm{\xi}=[a_1,a_2,\cdots,a_n]^{\mathrm{T}},\bm{\xi}^{\mathrm{T}}\bm{\xi}=\sum\limits_{i=1}^na_i^2=1 ξ=[a1,a2,,an]T,ξTξ=i=1nai2=1,证明: ∣ E − ξ T ξ ∣ = 0 |\bm{E}-\bm{\xi}^{\mathrm{T}}\bm{\xi}|=0 EξTξ=0

  构造齐次线性方程组 ( E − ξ T ξ ) x = 0 (\bm{E}-\bm{\xi}^{\mathrm{T}}\bm{\xi})\bm{x}=\bm{0} (EξTξ)x=0。因 ( E − ξ T ξ ) ξ = ξ − ξ ξ T ξ = ξ − ξ ( ξ T ξ ) = 0 (\bm{E}-\bm{\xi}^{\mathrm{T}}\bm{\xi})\bm{\xi}=\bm{\xi}-\bm{\xi}\bm{\xi}^\mathrm{T}\bm{\xi}=\bm{\xi}-\bm{\xi}(\bm{\xi}^\mathrm{T}\bm{\xi})=\bm{0} (EξTξ)ξ=ξξξTξ=ξξ(ξTξ)=0,其中 ξ ≠ 0 \bm{\xi}\ne\bm{0} ξ=0,故方程组有非零解 ξ \bm{\xi} ξ,从而得证
∣ E − ξ T ξ ∣ = 0. |\bm{E}-\bm{\xi}^{\mathrm{T}}\bm{\xi}|=0. EξTξ=0.
这道题主要利用了构造方程组求解

例2.16  设 A \bm{A} A n n n阶矩阵,满足 A 2 = A \bm{A}^2=\bm{A} A2=A,且 A ≠ E \bm{A}\ne\bm{E} A=E,证明: ∣ A ∣ = 0 |\bm{A}|=0 A=0

  根据题设条件 A 2 = A \bm{A}^2=\bm{A} A2=A,有 A 2 = A = A ( A − E ) = O \bm{A}^2=\bm{A}=\bm{A}(\bm{A}-\bm{E})=\bm{O} A2=A=A(AE)=O,又 A ≠ E \bm{A}\ne\bm{E} A=E,故 A − E ≠ O \bm{A}-\bm{E}\ne\bm{O} AE=O
  将 A − E \bm{A}-\bm{E} AE按列划分成块,设 A − E = [ ξ 1 , ξ 2 , ⋯   , ξ n ] \bm{A}-\bm{E}=[\xi_1,\xi_2,\cdots,\xi_n] AE=[ξ1,ξ2,,ξn],则 A − E \bm{A}-\bm{E} AE的每一列均是方程组 A x = 0 \bm{Ax}=\bm{0} Ax=0的解向量,由于 A − E ≠ O \bm{A}-\bm{E}\ne\bm{O} AE=O,故 A − E \bm{A}-\bm{E} AE中至少有一列 ξ i \xi_i ξi不是零向量,故 A x = 0 \bm{Ax}=\bm{0} Ax=0至少有一个非零解,从而得证 ∣ A ∣ = 0 |\bm{A}|=0 A=0。(这道题主要利用了克拉默法则求解

新版例题二

例2.3

在这里插入图片描述

在这里插入图片描述

例2.4

在这里插入图片描述

在这里插入图片描述

例2.5

在这里插入图片描述

在这里插入图片描述

写在最后

  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
   欢迎非商业转载,转载请注明出处。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值