线性代数张宇1000题 第六章 向量组

目录

B B B

6.齐次线性方程组的系数矩阵 A 4 × 5 = [ β 1 , β 2 , β 3 , β 4 , β 5 ] \bm{A}_{4\times5}=[\bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_3,\bm{\beta}_4,\bm{\beta}_5] A4×5=[β1,β2,β3,β4,β5]经过初等行变换化成阶梯形矩阵为 A = [ β 1 , β 2 , β 3 , β 4 , β 5 ] → 初 等 行 变 换 [ 1 2 − 1 5 2 0 1 2 6 0 0 0 0 4 0 0 0 0 0 0 ] \bm{A}=[\bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_3,\bm{\beta}_4,\bm{\beta}_5]\xrightarrow{初等行变换}\begin{bmatrix}1&2&-1&5&2\\0&1&2&6&0\\0&0&0&4&0\\0&0&0&0&0\end{bmatrix} A=[β1,β2,β3,β4,β5] 10002100120056402000,则(  )。
( A ) β 1 (A)\bm{\beta}_1 (A)β1不能由 β 3 , β 4 , β 5 \bm{\beta}_3,\bm{\beta}_4,\bm{\beta}_5 β3,β4,β5线性表出;
( B ) β 2 (B)\bm{\beta}_2 (B)β2不能由 β 1 , β 3 , β 5 \bm{\beta}_1,\bm{\beta}_3,\bm{\beta}_5 β1,β3,β5线性表出;
( C ) β 3 (C)\bm{\beta}_3 (C)β3不能由 β 1 , β 2 , β 5 \bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_5 β1,β2,β5线性表出;
( D ) β 4 (D)\bm{\beta}_4 (D)β4不能由 β 1 , β 2 , β 3 \bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_3 β1,β2,β3线性表出。

   β i \bm{\beta}_i βi能否由其他系列线性表出,只需将 β i \bm{\beta}_i βi视为非齐次线性方程的右端自由项(无论它原来在什么位置),有关向量留在左端,去除无关向量,看非齐次方程是否有解即可。由阶梯形矩阵知, β 4 \bm{\beta}_4 β4不能由 β 1 , β 2 , β 3 \bm{\beta}_1,\bm{\beta}_2,\bm{\beta}_3 β1,β2,β3线性表出。(这道题主要利用了线性方程组和向量组的关系求解

11.设向量组 α 1 , α 2 , ⋯   , α s ( s ⩾ 2 ) \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_s(s\geqslant2) α1,α2,,αs(s2)线性无关,且 β 1 = α 1 + α 2 , β 2 = α 2 + α 3 , ⋯   , β s − 1 = α s − 1 + α s , β s = α s + α 1 \bm{\beta}_1=\bm{\alpha}_1+\bm{\alpha}_2,\bm{\beta}_2=\bm{\alpha}_2+\bm{\alpha}_3,\cdots,\bm{\beta}_{s-1}=\bm{\alpha}_{s-1}+\bm{\alpha}_s,\bm{\beta}_s=\bm{\alpha}_s+\bm{\alpha}_1 β1=α1+α2,β2=α2+α3,,βs1=αs1+αs,βs=αs+α1。讨论向量组 β 1 , β 2 , ⋯   , β s \bm{\beta}_1,\bm{\beta}_2,\cdots,\bm{\beta}_s β1,β2,,βs的线性相关性。

  设 x 1 β 1 + x 2 β 2 + ⋯ + β s = 0 x_1\bm{\beta}_1+x_2\bm{\beta}_2+\cdots+\bm{\beta}_s=\bm{0} x1β1+x2β2++βs=0,即 ( x 1 + x s ) α 1 + ( x 1 + x 2 ) α 2 + ⋯ + ( x s − 1 + x s ) α s = 0 (x_1+x_s)\bm{\alpha}_1+(x_1+x_2)\bm{\alpha}_2+\cdots+(x_{s-1}+x_s)\bm{\alpha}_s=\bm{0} (x1+xs)α1+(x1+x2)α2++(xs1+xs)αs=0。因为 α 1 , α 2 , ⋯   , α s \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_s α1,α2,,αs线性无关,则 { x 1 + x s = 0 , x 1 + x 2 = 0 , ⋯ ⋯ ⋯ x s − 1 + x s = 0 \begin{cases}x_1+x_s=0,\\x_1+x_2=0,\\\cdots\cdots\cdots\\x_{s-1}+x_s=0\end{cases} x1+xs=0,x1+x2=0,xs1+xs=0其系数行列式 ∣ A ∣ = ∣ 1 0 0 ⋯ 0 1 1 1 0 ⋯ 0 0 0 1 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋮ ⋮ 0 0 0 ⋯ 1 1 ∣ = 1 + ( − 1 ) s + 1 |\bm{A}|=\begin{vmatrix}1&0&0&\cdots&0&1\\1&1&0&\cdots&0&0\\0&1&1&\cdots&0&0\\\vdots&\vdots&\vdots&&\vdots&\vdots\\0&0&0&\cdots&1&1\end{vmatrix}=1+(-1)^{s+1} A=11000110001000011001=1+(1)s+1
  当 s s s为奇数时, ∣ A ∣ = 2 ≠ 0 |\bm{A}|=2\ne0 A=2=0,方程组只有零解,则向量组 β 1 , β 2 , ⋯   , β s \bm{\beta}_1,\bm{\beta}_2,\cdots,\bm{\beta}_s β1,β2,,βs线性无关。
  当 s s s为偶数时, ∣ A ∣ = 0 |\bm{A}|=0 A=0,方程组有非零解,则向量组 β 1 , β 2 , ⋯   , β s \bm{\beta}_1,\bm{\beta}_2,\cdots,\bm{\beta}_s β1,β2,,βs线性相关。(这道题主要利用了构造方程组求解

13.设 A \bm{A} A 3 × 3 3\times3 3×3矩阵, α 1 , α 2 , α 3 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3 α1,α2,α3 3 3 3维列向量,且线性无关,已知 A α 1 = α 2 + α 3 , A α 2 = α 1 + α 3 , A α 3 = α 1 + α 2 \bm{A\alpha}_1=\bm{\alpha}_2+\bm{\alpha}_3,\bm{A\alpha}_2=\bm{\alpha}_1+\bm{\alpha}_3,\bm{A\alpha}_3=\bm{\alpha}_1+\bm{\alpha}_2 Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2

(2)求 ∣ A ∣ |\bm{A}| A

  由 [ A α 1 , A α 2 , A α 3 ] = A [ α 1 , α 2 , α 3 ] = [ α 1 , α 2 , α 3 ] [ 0 1 1 1 0 1 1 1 0 ] [\bm{A\alpha}_1,\bm{A\alpha}_2,\bm{A\alpha}_3]=\bm{A}[\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3]=[\bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3]\begin{bmatrix}0&1&1\\1&0&1\\1&1&0\end{bmatrix} [Aα1,Aα2,Aα3]=A[α1,α2,α3]=[α1,α2,α3]011101110,两边取行列式,得 ∣ A ∣ = ∣ 0 1 1 1 0 1 1 1 0 ∣ = 2 |\bm{A}|=\begin{vmatrix}0&1&1\\1&0&1\\1&1&0\end{vmatrix}=2 A=011101110=2。(这道题主要利用了行列式求解

24.设 3 3 3维向量组 α 1 , α 2 \bm{\alpha}_1,\bm{\alpha}_2 α1,α2线性无关, β 1 , β 2 \bm{\beta}_1,\bm{\beta}_2 β1,β2线性无关。

(2)若 α 1 = [ 1 , − 2 , 3 ] T , α 2 = [ 2 , 1 , 1 ] T , β 1 = [ − 2 , 1 , 4 ] T , β 2 = [ − 5 , − 3 , 5 ] T \bm{\alpha}_1=[1,-2,3]^\mathrm{T},\bm{\alpha}_2=[2,1,1]^\mathrm{T},\bm{\beta}_1=[-2,1,4]^\mathrm{T},\bm{\beta}_2=[-5,-3,5]^\mathrm{T} α1=[1,2,3]T,α2=[2,1,1]T,β1=[2,1,4]T,β2=[5,3,5]T。求既可由 α 1 , α 2 \bm{\alpha}_1,\bm{\alpha}_2 α1,α2线性表出,也可由 β 1 , β 2 \bm{\beta}_1,\bm{\beta}_2 β1,β2线性表出的所有非零向量 ξ \bm{\xi} ξ

  设 ξ = k 1 α 1 + k 2 α 2 = − λ 1 β 1 − λ 2 β 2 \bm{\xi}=k_1\bm{\alpha}_1+k_2\bm{\alpha}_2=-\lambda_1\bm{\beta}_1-\lambda_2\bm{\beta}_2 ξ=k1α1+k2α2=λ1β1λ2β2,则得齐次线性方程组 k 1 α 1 + k 2 α 2 + λ 1 β 1 + λ 2 β 2 = 0 k_1\bm{\alpha}_1+k_2\bm{\alpha}_2+\lambda_1\bm{\beta}_1+\lambda_2\bm{\beta}_2=\bm{0} k1α1+k2α2+λ1β1+λ2β2=0。将 α 1 , α 2 , β 1 , β 2 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\beta}_1,\bm{\beta}_2 α1,α2,β1,β2合并成矩阵,并作初等行变换,得
[ α 1 , α 2 , β 1 , β 2 ] = [ 1 2 − 2 − 5 − 2 1 1 − 3 3 1 4 5 ] → [ 1 2 − 2 − 5 0 5 − 3 − 13 0 0 7 7 ] [\bm{\alpha}_1,\bm{\alpha}_2,\bm{\beta}_1,\bm{\beta}_2]=\begin{bmatrix}1&2&-2&-5\\-2&1&1&-3\\3&1&4&5\end{bmatrix}\rightarrow\begin{bmatrix}1&2&-2&-5\\0&5&-3&-13\\0&0&7&7\end{bmatrix} [α1,α2,β1,β2]=1232112145351002502375137
  解得 [ k 1 , k 2 , λ 1 , λ 2 ] = k [ − 1 , 2 , − 1 , 1 ] [k_1,k_2,\lambda_1,\lambda_2]=k[-1,2,-1,1] [k1,k2,λ1,λ2]=k[1,2,1,1]。故既可由 α 1 , α 2 \bm{\alpha}_1,\bm{\alpha}_2 α1,α2线性表出,又可以由 β 1 , β 2 \bm{\beta}_1,\bm{\beta}_2 β1,β2线性表出的所有非零向量为 ξ = k 1 α 1 + k 2 α 2 = k [ 3 4 − 1 ] \bm{\xi}=k_1\bm{\alpha}_1+k_2\bm{\alpha}_2=k\begin{bmatrix}3\\4\\-1\end{bmatrix} ξ=k1α1+k2α2=k341,其中 k k k是任意的非零常数。(这道题主要利用了初等行变换求解

25.设 A \bm{A} A 3 3 3阶方阵, A ∗ \bm{A}^* A为其伴随矩阵,且 A ∗ = [ 1 2 − 2 − 1 − 2 2 3 6 − 6 ] \bm{A}^*=\begin{bmatrix}1&2&-2\\-1&-2&2\\3&6&-6\end{bmatrix} A=113226226

(1)确定矩阵 A ∗ \bm{A}^* A A \bm{A} A的秩;

  由 A ∗ = [ 1 2 − 2 − 1 − 2 2 3 6 − 6 ] → [ 1 2 − 2 0 0 0 0 0 0 ] \bm{A}^*=\begin{bmatrix}1&2&-2\\-1&-2&2\\3&6&-6\end{bmatrix}\rightarrow\begin{bmatrix}1&2&-2\\0&0&0\\0&0&0\end{bmatrix} A=113226226100200200 r ( A ∗ ) = 1 r(\bm{A}^*)=1 r(A)=1,从而知 r ( A ) = 3 − 1 = 2 r(\bm{A})=3-1=2 r(A)=31=2

(2)讨论线性方程组 A x = 0 \bm{Ax}=\bm{0} Ax=0的基础解系由多少个线性无关解向量构成?并给出该方程组的通解。

  线性方程组 A x = 0 \bm{Ax}=\bm{0} Ax=0的基础解系由 3 − 1 = 2 3-1=2 31=2个线性无关的解向量构成。又由 A A ∗ = ∣ A ∣ E = O \bm{AA}^*=|\bm{A}|\bm{E}=\bm{O} AA=AE=O知, A ∗ \bm{A}^* A的列向量组均为方程组 A x = 0 \bm{Ax}=\bm{0} Ax=0的解向量,因此,取非零列向量 ξ = [ 1 , − 1 , 3 ] T \bm{\xi}=[1,-1,3]^\mathrm{T} ξ=[1,1,3]T,即可构成 A x = 0 \bm{Ax}=\bm{0} Ax=0的有关基础解系,通解为 c ξ = c [ 1 , − 1 , 3 ] T c\bm{\xi}=c[1,-1,3]^\mathrm{T} cξ=c[1,1,3]T,其中 c c c为任意常数。(这道题主要利用了伴随矩阵求解

C C C

4.设 A \bm{A} A n n n阶正定矩阵, α 1 , α 2 , ⋯   , α n \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_n α1,α2,,αn n n n维非零列向量,且满足 α i T A − 1 α j = 0 ( i ≠ j ; i , j = 1 , 2 , ⋯   , n ) \bm{\alpha}^\mathrm{T}_i\bm{A}^{-1}\bm{\alpha}_j=0(i\ne j;i,j=1,2,\cdots,n) αiTA1αj=0(i=j;i,j=1,2,,n)。证明:向量组 α 1 , α 2 , ⋯   , α n \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_n α1,α2,,αn线性无关。

  设有一组数 k 1 , k 2 , ⋯   , k n k_1,k_2,\cdots,k_n k1,k2,,kn,使得 k 1 α 1 + k 2 α 2 + ⋯ + k n α n = 0 k_1\bm{\alpha}_1+k_2\bm{\alpha}_2+\cdots+k_n\bm{\alpha}_n=\bm{0} k1α1+k2α2++knαn=0
  在上式两端左乘 α i T A − 1 \bm{\alpha}_i^\mathrm{T}\bm{A}^{-1} αiTA1,由 α i T A − 1 α j = 0 ( i ≠ j ; i , j = 1 , 2 , ⋯   , n ) \bm{\alpha}^\mathrm{T}_i\bm{A}^{-1}\bm{\alpha}_j=0(i\ne j;i,j=1,2,\cdots,n) αiTA1αj=0(i=j;i,j=1,2,,n),可得 k i α i T A − 1 α i = 0 k_i\bm{\alpha}^\mathrm{T}_i\bm{A}^{-1}\bm{\alpha}_i=0 kiαiTA1αi=0
  因 A \bm{A} A为正定矩阵,则 A − 1 \bm{A}^{-1} A1也为正定矩阵,且 α i ≠ 0 \bm{\alpha}_i\ne\bm{0} αi=0,故 α i T A − 1 α i > 0 \bm{\alpha}^\mathrm{T}_i\bm{A}^{-1}\bm{\alpha}_i>0 αiTA1αi>0
  于是 k i = 0 ( i = 1 , 2 , ⋯   , n ) k_i=0(i=1,2,\cdots,n) ki=0(i=1,2,,n)。所以向量组 α 1 , α 2 , ⋯   , α n \bm{\alpha}_1,\bm{\alpha}_2,\cdots,\bm{\alpha}_n α1,α2,,αn线性无关。(这道题主要利用了代入行列式求解

7.设齐次线性方程组 { a 11 x 1 + a 12 x 2 + a 13 x 3 + a 14 x 4 = 0 , a 21 x 1 + a 22 x 2 + a 23 x 3 + a 24 x 4 = 0 \begin{cases}a_{11}x_1+a_{12}x_2+a_{13}x_3+a_{14}x_4=0,\\a_{21}x_1+a_{22}x_2+a_{23}x_3+a_{24}x_4=0\end{cases} {a11x1+a12x2+a13x3+a14x4=0,a21x1+a22x2+a23x3+a24x4=0有基础解系 β 1 = [ b 11 , b 12 , b 13 , b 14 ] T , β 2 = [ b 21 , b 22 , b 23 , b 24 ] T \bm{\beta}_1=[b_{11},b_{12},b_{13},b_{14}]^\mathrm{T},\bm{\beta}_2=[b_{21},b_{22},b_{23},b_{24}]^\mathrm{T} β1=[b11,b12,b13,b14]T,β2=[b21,b22,b23,b24]T,记 α 1 = [ a 11 , a 12 , a 13 , a 14 ] T , α 2 = [ a 21 , a 22 , a 23 , a 24 ] T \bm{\alpha}_1=[a_{11},a_{12},a_{13},a_{14}]^\mathrm{T},\bm{\alpha}_2=[a_{21},a_{22},a_{23},a_{24}]^\mathrm{T} α1=[a11,a12,a13,a14]T,α2=[a21,a22,a23,a24]T。证明:向量组 α 1 , α 2 , β 1 , β 2 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\beta}_1,\bm{\beta}_2 α1,α2,β1,β2线性无关。

  由题设条件, β 1 , β 2 \bm{\beta}_1,\bm{\beta}_2 β1,β2线性无关, r ( α 1 , α 2 ) = 2 r(\bm{\alpha}_1,\bm{\alpha}_2)=2 r(α1,α2)=2 α 1 , α 2 \bm{\alpha}_1,\bm{\alpha}_2 α1,α2线性无关,且 β 1 , β 2 \bm{\beta}_1,\bm{\beta}_2 β1,β2是方程组的解,满足 α i T β j = 0 ( i = 1 , 2 , j = 1 , 2 ) \bm{\alpha}^\mathrm{T}_i\bm{\beta}_j=0(i=1,2,j=1,2) αiTβj=0(i=1,2,j=1,2)
r ( α 1 , α 2 , β 1 , β 2 ) = r ( [ α 1 , α 2 , β 1 , β 2 ] T [ α 1 , α 2 , β 1 , β 2 ] ) = r ( [ α 1 T α 1 α 1 T α 2 α 2 T α 1 α 2 T α 2 O O β 1 T β 1 β 1 T β 2 β 2 T β 1 β 2 T β 2 ] ) = r ( [ [ α 1 , α 2 ] T [ α 1 , α 2 ] O O [ β 1 , β 2 ] T [ β 1 , β 2 ] ] ) = r ( [ α 1 , α 2 ] T [ α 1 , α 2 ] ) + r ( [ β 1 , β 2 ] T [ β 1 , β 2 ] ) = r ( α 1 , α 2 ) + r ( β 1 , β 2 ) = 2 + 2 = 4. \begin{aligned} r(\bm{\alpha}_1,\bm{\alpha}_2,\bm{\beta}_1,\bm{\beta}_2)&=r([\bm{\alpha}_1,\bm{\alpha}_2,\bm{\beta}_1,\bm{\beta}_2]^\mathrm{T}[\bm{\alpha}_1,\bm{\alpha}_2,\bm{\beta}_1,\bm{\beta}_2])\\ &=r\left(\begin{bmatrix}\begin{matrix}\bm{\alpha}_1^\mathrm{T}\bm{\alpha}_1&\bm{\alpha}_1^\mathrm{T}\bm{\alpha}_2\\\bm{\alpha}_2^\mathrm{T}\bm{\alpha}_1&\bm{\alpha}_2^\mathrm{T}\bm{\alpha}_2\end{matrix}&\bm{O}\\\bm{O}&\begin{matrix}\bm{\beta}_1^\mathrm{T}\bm{\beta}_1&\bm{\beta}_1^\mathrm{T}\bm{\beta}_2\\\bm{\beta}_2^\mathrm{T}\bm{\beta}_1&\bm{\beta}_2^\mathrm{T}\bm{\beta}_2\end{matrix}\end{bmatrix}\right)\\ &=r\left(\begin{bmatrix}[\bm{\alpha}_1,\bm{\alpha}_2]^\mathrm{T}[\bm{\alpha}_1,\bm{\alpha}_2]&\bm{O}\\\bm{O}&[\bm{\beta}_1,\bm{\beta}_2]^\mathrm{T}[\bm{\beta}_1,\bm{\beta}_2]\end{bmatrix}\right)\\ &=r([\bm{\alpha}_1,\bm{\alpha}_2]^\mathrm{T}[\bm{\alpha}_1,\bm{\alpha}_2])+r([\bm{\beta}_1,\bm{\beta}_2]^\mathrm{T}[\bm{\beta}_1,\bm{\beta}_2])\\ &=r(\bm{\alpha}_1,\bm{\alpha}_2)+r(\bm{\beta}_1,\bm{\beta}_2)=2+2=4. \end{aligned} r(α1,α2,β1,β2)=r([α1,α2,β1,β2]T[α1,α2,β1,β2])=rα1Tα1α2Tα1α1Tα2α2Tα2OOβ1Tβ1β2Tβ1β1Tβ2β2Tβ2=r([[α1,α2]T[α1,α2]OO[β1,β2]T[β1,β2]])=r([α1,α2]T[α1,α2])+r([β1,β2]T[β1,β2])=r(α1,α2)+r(β1,β2)=2+2=4.
  故 α 1 , α 2 , β 1 , β 2 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\beta}_1,\bm{\beta}_2 α1,α2,β1,β2线性无关。(这道题主要利用了矩阵的秩求解

8.设向量组 α 1 = [ a 1 , a 2 , a 3 ] T , α 2 = [ b 1 , b 2 , b 3 ] T , α 3 = [ c 1 , c 2 , c 3 ] T \bm{\alpha}_1=[a_1,a_2,a_3]^\mathrm{T},\bm{\alpha}_2=[b_1,b_2,b_3]^\mathrm{T},\bm{\alpha}_3=[c_1,c_2,c_3]^\mathrm{T} α1=[a1,a2,a3]T,α2=[b1,b2,b3]T,α3=[c1,c2,c3]T,若三条直线 { a 1 x + b 1 y = c 1 , a 2 x + b 2 y = c 2 , a 3 x + b 3 y = c 3 ( a i 2 + b i 2 ≠ 0 , i = 1 , 2 , 3 ) \begin{cases}a_1x+b_1y=c_1,\\a_2x+b_2y=c_2,\\a_3x+b_3y=c_3\end{cases}(a_i^2+b_i^2\ne0,i=1,2,3) a1x+b1y=c1,a2x+b2y=c2,a3x+b3y=c3(ai2+bi2=0,i=1,2,3)相交于一点,则向量 α 1 , α 2 , α 3 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3 α1,α2,α3间应有什么样的线性关系?说明理由。

  设线性方程组 { a 1 x + b 1 y = c 1 , a 2 x + b 2 y = c 2 , a 3 x + b 3 y = c 3 ( a i 2 + b i 2 ≠ 0 , i = 1 , 2 , 3 ) \begin{cases}a_1x+b_1y=c_1,\\a_2x+b_2y=c_2,\\a_3x+b_3y=c_3\end{cases}(a_i^2+b_i^2\ne0,i=1,2,3) a1x+b1y=c1,a2x+b2y=c2,a3x+b3y=c3(ai2+bi2=0,i=1,2,3),由题设,三条直线相交于一点,即方程组有唯一解,从而由向量方程 x α 1 + y α 2 = α 3 x\bm{\alpha}_1+y\bm{\alpha}_2=\bm{\alpha}_3 xα1+yα2=α3知,向量 α 3 \bm{\alpha}_3 α3可以被向量组 α 1 , α 2 \bm{\alpha}_1,\bm{\alpha}_2 α1,α2线性表示,且表达式唯一。同时也表明向量组 α 1 , α 2 , α 3 \bm{\alpha}_1,\bm{\alpha}_2,\bm{\alpha}_3 α1,α2,α3线性相关且 α 1 , α 2 \bm{\alpha}_1,\bm{\alpha}_2 α1,α2线性无关。(这道题主要利用了构造方程组求解

写在最后

  个人觉得本章B组26题题干上存在矛盾,存疑。
  如果觉得文章不错就点个赞吧。另外,如果有不同的观点,欢迎留言或私信。
  欢迎非商业转载,转载请注明出处。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值