下面介绍的是接着上一篇博文的动态神经网络和网络的训练方法,笔记中的matlab代码在文末有给出。
%% problem 1.3.4 Hopfield nueral network
N=2000;
x1(1)=-rand;
x2(1)=rand;
a11= -0.1; a12= 1;
a21= -1; a22= 0.1;
w11= pi; w12= 1;
w21= 1; w22= -1;
u1= 1;
u2= -1;
v11= 1.23456; v12= 2.23456;
v21= 1.23456; v22= 2.23456;
for k=1:N
x1(k+1)= a11*x1(k) + a12*x2(k) + w11*tanh(v11*x1(k)) + w12*tanh(v12*x2(k))+ u1;
x2(k+1)= a21*x1(k) + a22*x2(k) + w21*tanh(v21*x1(k)) + w22*tanh(v22*x2(k))+ u2;
figure(1); hold on; plot(x1(k),x2(k),'o');
end