线性代数——线性变换——旋转矩阵(泰勒公式、虚数、欧拉公式)

设点(x,y)离坐标原点距离r,与x轴夹角\theta _{0},将点绕原点逆时针旋转\theta,旋转之后点的坐标为({x}',{y}')。显然({x}',{y}')与原点距离不变,仍然为r

 显然如下关系成立:

\frac{​{x}'}{r}=cos(\theta _{0}+\theta )=cos(\theta _{0})cos(\theta)-sin(\theta _{0})sin(\theta)=\frac{x}{r}cos(\theta)-\frac{y}{r}sin(\theta)

\frac{​{y}'}{r}=sin(\theta _{0}+\theta )=sin(\theta _{0})cos(\theta)+cos(\theta _{0})sin(\theta)=\frac{y}{r}cos(\theta)+\frac{x}{r}sin(\theta)

整理得到:

{x}'=xcos(\theta)-ysin(\theta)

{y}'=xsin(\theta)-ycos(\theta)

把上面这两个方程写成矩阵形式:

\begin{pmatrix} {x}'\\ {y}' \end{pmatrix}=\begin{pmatrix} cos\theta & -sin\theta \\ sin\theta & cos\theta \end{pmatrix}\begin{pmatrix} x\\ y \end{pmatrix}

所以,只要用上面这个矩阵作用在一个矢量(x,y)上,就会得到旋转之后的矢量({x}',{y}')。因此,这个矩阵就代表了把矢量逆时针旋转\theta的旋转操作。

【扩充】证明cos(\theta _{0}+\theta )=cos(\theta _{0})cos(\theta)-sin(\theta _{0})sin(\theta)sin(\theta _{0}+\theta )=sin(\theta _{0})cos(\theta)+cos(\theta _{0})sin(\theta)

证明:

分成3个部分:

1)、理解泰勒公式的由来及意义

问题:一个简单的三角函数y=sin(x),现在要求当x=1时的函数值。如果不借助计算机,要怎么求这个值呢?

泰勒的思路是:用多项式函数去近似拟合三角函数。

在回归分析中,我们以多项式函数拟合数据集,多项式的“项”越多,对数据集的拟合程度越好,如下图。

 于是这个问题就转换为求解一个多项式函数(“项”的个数越多拟合越好,可以无穷大),让这个多项式函数无限地和三角函数或者其他我们需要的函数等价。

推导过程如下:

我们定义f(x)=sin(x),我们塑造一个多项式函数:p(x)=a_{0}+a_{1}(x-x_{0})+a_{2}(x-x_{0})^{2}+...+a_{n}(x-x_{0})^{n}+o(x-x_{0})^{n+1},其中o(x-x_{0})^{n+1}为误差项,是p(x)f(x)的差值。

f(x)=sin(x)=p(x),则f(x)=a_{0}+a_{1}(x-x_{0})+a_{2}(x-x_{0})^{2}+...+a_{n}(x-x_{0})^{n}+o(x-x_{0})^{n+1}

 我们假设f(x)x=x_{0}点左右邻域内,各阶导数都存在(必要条件),则:

f(x_{0})=a_{0}

{f}'(x_{0})=a_{1}

{f}''(x_{0})=2!a_{2}

{f}'''(x_{0})=3!a_{3}

....

f^{(n)}(x_{0})=n!a_{n}

进而得:

a_{0}=f(x_{0})

a_{1}={f}'(x_{0})

a_{2}=\frac{​{f}''(x_{0})}{2!}

a_{3}=\frac{​{f}'''(x_{0})}{3!}

....

a_{n}=\frac{f^{(n)}(x_{0})}{n!}

将系数代入f(x)=a_{0}+a_{1}(x-x_{0})+a_{2}(x-x_{0})^{2}+...+a_{n}(x-x_{0})^{n}+o(x-x_{0})^{n+1}

\begin{align}f(x) & =f(x_{0})+{f}'(x_{0})(x-x_{0})\\&+\frac{1}{2!}{f}''(x_{0})(x-x_{0})^{2}+\frac{1}{3!}{f}'''(x_{0})(x-x_{0})^{3}...\\&+\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+o(x-x_{0})^{n+1} \end{align}

化简得:

f(x)=\sum ^{\infty }_{n=0}\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}+o(x-x_{0})^{n+1},误差项o(x-x_{0})^{n+1}可去掉,得

f(x)=\sum ^{\infty }_{n=0}\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n}这就是泰勒公式,其中f^{(n)}(x_{0})代表f(x)n阶导数

案例1f(x)=sin(x) 

①先求其的n阶导数f^{(n)}(x_{0})

f(x_{0})=sinx_{0}=sin(x_{0}+\frac{\pi }{2}\cdot 0)

{f}'(x_{0})=cosx_{0}=sin(x_{0}+\frac{\pi }{2}\cdot 1)

{f}''(x_{0})=-sinx_{0}=sin(x_{0}+\frac{\pi }{2}\cdot 2)

{f}'''(x_{0})=-cosx_{0}=sin(x_{0}+\frac{\pi }{2}\cdot 3)

{f}^{4}(x_{0})=sinx_{0}=sin(x_{0}+\frac{\pi }{2}\cdot 4)

....

f^{(n)}(x_{0})=sin(x_{0}+\frac{\pi }{2}\cdot n)

已知:sin(0)=0,sin(\frac{\pi }{2})=1,sin(\pi)=0,sin(\frac{3\pi }{2})=-1,sin(2\pi)=0,.....

②我们将n阶导数f^{(n)}(x_{0})代入方程f(x)=\sum ^{\infty }_{n=0}\frac{1}{n!}f^{(n)}(x_{0})(x-x_{0})^{n},得

\begin{align}f(x)=p(x)&=\sum ^{\infty }_{n=0}\frac{1}{n!}sin(x_{0}+\frac{\pi }{2}\cdot n)(x-x_{0})^{n}\\&=\frac{1}{0!}sin(x_{0}+\frac{\pi }{2}\cdot 0)(x-x_{0})^{0}+\frac{1}{1!}sin(x_{0}+\frac{\pi }{2}\cdot 1)(x-x_{0})^{1}+\frac{1}{2!}sin(x_{0}+\frac{\pi }{2}\cdot 2)(x-x_{0})^{2} \\&+\frac{1}{3!}sin(x_{0}+\frac{\pi }{2}\cdot 3)(x-x_{0})^{3}+\frac{1}{4!}sin(x_{0}+\frac{\pi }{2}\cdot 4)(x-x_{0})^{4} +...+\frac{1}{n!}sin(x_{0}+\frac{\pi }{2}\cdot n)(x-x_{0})^{n} \end{align}

x_{0}=0,得:

\begin{align}f(x)=sinx=p(x) &=0+x+0-\frac{1}{3!}x^{3}+0 +\frac{1}{5!}x^{5}+0-\frac{1}{7!}x^{7}...+\frac{1}{n!}sin(x_{0}+\frac{\pi }{2}\cdot n)(x-x_{0})^{n} \\&=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+...+(-1)^{n}\frac{x^{2n+1}}{(2n+1)!} \end{align}

案例2f(x)=e^{x} 

①我们知道{(e^{x})}'=e^{x}

\begin{align}f(x)=p(x)&=\sum ^{\infty }_{n=0}\frac{1}{n!}e^{x_{0}}(x-x_{0})^{n}\\&=\frac{1}{0!}e^{x_{0}}(x-x_{0})^{0}+\frac{1}{1!}e^{x_{0}}(x-x_{0})^{1}+\frac{1}{2!}e^{x_{0}}(x-x_{0})^{2} \\&+\frac{1}{3!}e^{x_{0}}(x-x_{0})^{3}+\frac{1}{4!}e^{x_{0}}(x-x_{0})^{4} +...+\frac{1}{n!}e^{x_{0}}(x-x_{0})^{n} \end{align}

x_{0}=0,得:

f(x)=e^{x}=p(x) =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+...+\frac{x^{n}}{n!}

2)、欧拉公式e^{i\theta }=cos\theta +isin\theta的推导(当\theta =\pi时,e^{i\pi }=-1 +0

泰勒公式:

sinx=\sum ^{\infty }_{n=0}(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+...+(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}

cosx=\sum ^{\infty }_{n=0}(-1)^{n}\frac{x^{2n}}{(2n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...+(-1)^{n}\frac{x^{2n}}{(2n)!}

e^{x}=\sum ^{\infty }_{n=0}\frac{x^{n}}{n!}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+...+\frac{x^{n}}{n!}

虚数部分:

i^{0}=1

i^{1}=i

i^{2}=-1

i^{3}=-i

i^{4}=1

...

根据i^{2}=-1i^{4}=1我们可以将cosx=\sum ^{\infty }_{n=0}(-1)^{n}\frac{x^{2n}}{(2n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...+(-1)^{n}\frac{x^{2n}}{(2n)!}做下变换,结果如下:

cosx=1+\frac{(xi)x^{2}}{2!}+\frac{(xi)^{4}}{4!}+\frac{(xi)^{6}}{6!}+...+(i)^{2n}\frac{x^{2n}}{(2n)!}

sinx=\sum ^{\infty }_{n=0}(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+...+(-1)^{n}\frac{x^{2n+1}}{(2n+1)!}做下变换,结果为:

sinx=x+\frac{x^{3}i^{2}}{3!}+\frac{x^{5}i^{4}}{5!}+\frac{x^{7}i^{6}}{7!}+...+(i)^{2n}\frac{x^{2n+1}}{(2n+1)!},乘以i

isinx=ix+\frac{(xi)^{3}}{3!}+\frac{(xi)^{5}}{5!}+\frac{(xi)^{7}}{7!}+...+(i)^{2n}\frac{(xi)^{2n+1}}{(2n+1)!},所以:

cosx+isinx=\sum ^{\infty }_{n=0}\frac{(xi)^{n}}{n!}=e^{ix},即e^{i\theta }=cos\theta +isin\theta

3)、证明cos(\theta _{0}+\theta )=cos(\theta _{0})cos(\theta)-sin(\theta _{0})sin(\theta)sin(\theta _{0}+\theta )=sin(\theta _{0})cos(\theta)+cos(\theta _{0})sin(\theta)

从上面证明的欧拉公式可知:e^{i\theta }=cos\theta +isin\theta

\theta=A+B

e^{i(A+B) }=cos(A+B) +isin(A+B)

\begin{align}e^{i(A+B) } & =e^{iA }\cdot e^{iB }\\&=(cosA +isinA)(cosB +isinB) \\&=cosAcosB+i(sinAcosB+sinBcosA)+i^{2}sinAsinB \\&=cosAcosB-sinAsinB+i(sinAcosB+sinBcosA) \end{align}

所以得到:

cos(A+B)=cos(A)cos(B)-sin(A)sin(B)

sin(A+B )=sin(A)cos(B)+cos(A)sin(B)               

 

 



 

 

 

 

 

  • 7
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

xia ge tou lia

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值