多元函数第三:线性变换(4)旋转

本文深入探讨了二维平面上的旋转变换,证明了旋转变换是一种线性变换,并通过几何方法详细阐述了旋转的性质。此外,还介绍了如何通过线性变换矩阵表示旋转,并推导出三角函数的和角公式。
摘要由CSDN通过智能技术生成

上一篇博文介绍了一般的等距变换。本文介绍一个特殊的等距变换,即旋转变换。这里介绍旋转,指的是二维平面上的旋转。对于n维平面,结论完全类似,只是多了几个自由度而已。

在二维平面上,对一个向量a进行旋转变换,是指将它逆时针旋转一个角度\alpha,从而得到一个新的向量a'。见图1。

图1

 

为了证明旋转变换是线性变换,我们需要验证如下命题。

命题1.  设L_{\alpha}是二维平面上的一个旋转变换。对任意的a\in R^2都有a到a'=L_{\alpha}(a)的夹角为\alpha,如图1所示。那么,L_{\alpha}是一个线性变换。更确切地说,对任意的a,b\in R^2,p,q\in R

L_{\alpha}(pa+qb)=pL_{\alpha}(a)+qL_{\alpha}(b).

证明. 我们分两步来完成,这两步都是用几何的方法证明。

首先,我们证明L_{\alpha}(pa)=pL_{\alpha}(a)。我们记向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值