上一篇博文介绍了一般的等距变换。本文介绍一个特殊的等距变换,即旋转变换。这里介绍旋转,指的是二维平面上的旋转。对于n维平面,结论完全类似,只是多了几个自由度而已。
在二维平面上,对一个向量a进行旋转变换,是指将它逆时针旋转一个角度,从而得到一个新的向量a'。见图1。
图1
为了证明旋转变换是线性变换,我们需要验证如下命题。
命题1. 设是二维平面上的一个旋转变换。对任意的都有a到的夹角为,如图1所示。那么,是一个线性变换。更确切地说,对任意的有
.
证明. 我们分两步来完成,这两步都是用几何的方法证明。
首先,我们证明。我们记向量