采样和量化
实现模拟到数字的转换需要经历两个过程:采样和量化。
-
采样:将连续时间的模拟信号转换为离散时间序列的过程;
-
量化:将采样后获得的连续幅度值转换为离散幅度值的过程。
采样 Sampling
采样率选择
采样频率的选择取决于被采集信号的频率范围。
采样太慢,无法捕捉到被采信号的有用信息;
采样太快,会增加过多冗余的数据,增加不必要的数据量。
上图中,第三幅图会产生混叠,这是我们不愿看到的。
混叠信号的频率 = 被采信号频率 - 采样频率。
信号频率范围术语
Baseband Signal :基带信号,最低频率分量为0Hz或接近0Hz的信号。
Bandlimited:带限
Bandpass Signal :带通
奈奎斯特采样定理
为了避免产生信号混叠(aliased signal),基带信号的采样频率必须大于信号中存在的最大频率分量的两倍。
当用于采样带通信号时,可以通过使用欠采样技术来实现。采样频率要大于带通信号的最高频率分量fh与最低频率分量fl之差的两倍。
奈奎斯特区和混叠
根据奈奎斯特采样定理,任何任意数量的奈奎斯特区域都可以被定义,但只有第 1个奈奎斯特区域中的采样信号可以被直接表示。任何出现在较高奈奎斯特区域中的信号成分都会因混叠而“折叠”到第 1 个奈奎斯特区域内。
下图中为一个示例,假设采样率为200 Hz,奈奎斯特区宽度为100Hz。小于1/2采样率的信号可以直接被呈现出来,而大于1/2采样率的信号频率可以被混叠到第一奈奎斯特区。
量化 Quantisation
量化过程
量化跟ADC的位数息息相关,位数越高,量化精度就越高。
下图是一个示例,量化位数为4bit和量化位数为6bit的量化精度
量化误差
在模拟信号转换为数字信号的量化过程中,由于量化步长的限制而导致的信号失真或误差。
为了减少量化误差的影响,可以采取以下措施:
提高分辨率:通过增加量化级别的数量(即减少量化步长)来提高量化过程的分辨率,从而减少量化误差。
非均匀量化:使用非均匀量化方案,如对数量化或压缩动态范围,可以在不增加数据量的情况下减少低幅度信号的量化误差。
误差校正:在某些应用中,可以使用误差校正技术来减少量化误差的影响。
适当的信号处理:在信号处理的后续阶段,可以采用滤波、去噪等技术来减少量化误差的影响。
量化噪声
由于每个模拟值只能被量化到最接近的量化级别,而不是其精确值,因此会产生误差,这种误差在信号中表现为额外的噪声,即量化噪声。
为了减少量化噪声的影响,可以采取以下措施:
提高分辨率:通过增加比特深度(即每个样本的比特数),可以减小量化步长,从而减少量化噪声。
使用非均匀量化:非均匀量化方案,如对数量化或A-law或μ-law压缩,可以在不增加比特数的情况下减少对小信号的量化噪声。
过采样:通过过采样(以比奈奎斯特频率更高的频率采样),然后通过低通滤波和下采样来减少采样率,可以在一定程度上降低量化噪声的影响。
误差校正:在某些应用中,可以使用误差校正技术来减少量化噪声的影响,例如通过查找表(LUT)或数字信号处理算法来校正量化误差。
时域和频域 Time and Frequency Domains
时域和频域的转换的简单描述如图4.14所示。
离散傅里叶变换(DFT)是一种用于将离散时间信号从时域转换到频域的数学工具。DFT通过将时域信号分解为一系列正弦波和余弦波的组合来实现这一转换,每个波都有其特定的频率和幅度。这种转换对于分析信号的频率成分、检测周期性以及研究信号的频谱特性等方面非常有用。
FFT通常以更高效的形式实现DFT,它通过分治策略(将问题分解为更小的子问题)和对称性(利用DFT的对称性质来减少计算)来降低计算复杂度。FFT算法的引入极大地提高了频域分析的实用性,使其能够应用于实时信号处理和大数据量分析等场景。
逆离散傅里叶变换(IDFT)或者称为逆快速傅里叶变换(IFFT)可以用来进行相反的转换,从频域转换到时域。
时域到频域的转换工具:FFT
频域到时域的转换工具:IFFT