基于模型参考自适应控制(MRAC)的自动驾驶方向盘(油门)控制方法

实习还是能学到很多学校学不到的东西,总结下实习期间学到的一个自适应控制方法。最近比较忙,先大致写下原理的笔记供自己复习,后面有空再更下仿真。如有错误请不吝赐教~

背景

举个例子,目前公司自动驾驶车队主要有几款不同的车型,不同车型的方向盘型号都不同,可能有的用国产转向器,有的用进口转向器,有的车方向盘响应速度慢,有的方向盘响应速度快。不同的转向器在面对同一个上层算法指令时,所表现的执行效果肯定不完全相同。而且自动驾驶车队越庞大,同一算法下不同执行器的响应误差也就越大。为了使同一上层算法在不同执行器上执行效果尽可能相同,我们选用了模型参考自适应控制(Model Reference Adaptive Control, MRAC)。

为什么选择MRAC控制器

相比其他自适应控制器,MRAC可以自己设计一个参考的模型,使得不同的控制器在同一控制指令下,能够和我们自己设计的参考模型的响应曲线相同,而不受被控系统本身的性能影响。  且参考模型的性能要好于真实模型,如果参考模型性能还不如真实模型,那也没必要用参考模型来拉低原来的控制效果了。

整体框架 

MRAC控制器整体框架如下图所示,MRAC在自动驾驶中往往与上层控制算法共同使用,根据上层的横向/纵向控制算法(MPC、LQR/PID)输出的参考输入,即方向盘转角/油门开度,经过自适应控制器重新计算输入,并作用于被控系统(方向盘/油门)。下面详细说明各模块计算方法。

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值