历元间三差噪声提取的原理
误差传播律(协方差传播律 ) ) ) :描述的是观测值的函数的中误差与观测值中误差之间的关系。
协因数传播律(权逆阵传播律 ) ) ) :观测值的协因数阵与其线性函数的协因数阵的关系式。
将协方差传播律与协因数传播律合称为广义传播律。
协方差传播律
现有如下假设: X X X 是一个 n n n 行 1 列的观测向量,其数学期望为 μ X \mu_X μX ,协方差阵为 D X X 1 D_{X X} 1 DXX1 行 1 列的向量 Z Z Z 与 X X X 存在如下关系: Z = K X + k 0 Z=K X+k_0 Z=KX+k0 ,写成纯量形式为:
Z = k 1 X 1 + k 2 X 2 + ⋯ + k 0 Z=k_1 X_1+k_2 X_2+\cdots+k_0 Z=k1X1+k2X2+⋯+k0
那么 Z Z Z 的协方差为: D Z Z = σ Z 2 = K D X X K T D_{Z Z}=\sigma_Z^2=K D_{X X} K^T DZZ=σZ2=KDXXKT ,写成纯量形式为:
D Z Z = σ Z 2 = k 1 σ 1 2 + k 2 σ 2 2 + ⋯ + k n σ n 2 + 2 k 1 k 2 σ 12 + 2 k 1 k 3 σ 13 + ⋯ + 2 k 1 k n σ 1 n + ⋯ + 2 k n − 1 k n σ n − 1 , n \begin{aligned} & D_{Z Z}=\sigma_Z^2=k_1 \sigma_1^2+k_2 \sigma_2^2+\cdots+k_n \sigma_n^2+2 k_1 k_2 \sigma_{12}+2 k_1 k_3 \sigma_{13}+\cdots+2 k_1 k_n \sigma_{1 n} \\ & +\cdots+2 k_{n-1} k_n \sigma_{n-1, n} \end{aligned} DZZ=σZ2=k1σ