在信号调理中加入Teager-Kaiser能量算子(TKEO)提高了流行的肌电图(EMG)发病检测方法的准确性研究附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

肌电图(Electromyography, EMG)作为一种非侵入性生物电信号,在神经科学、康复医学、人机交互等领域具有广泛的应用价值。精确检测肌电信号的发病(onset),即肌肉活动开始的时刻,对于评估神经肌肉功能、控制假肢或机器人以及进行运动意图识别至关重要。然而,EMG信号固有的低信噪比、非线性特性以及背景噪声的干扰,使得准确发病检测成为一项具有挑战性的任务。传统的发病检测方法通常依赖于信号幅度的阈值判断,对噪声敏感且难以适应信号的动态变化。近年来,Teager-Kaiser能量算子(TKEO)以其独特的能量特性,在瞬时频率、能量和包络检测方面表现出色。本研究深入探讨了在信号调理阶段引入TKEO,以期提升流行EMG发病检测方法的准确性。通过对几种代表性EMG发病检测方法(如基于阈值的方法、双阈值法、基于包络的方法等)在加入TKEO预处理后性能的对比分析,并结合不同噪声水平和肌肉收缩类型的实验数据,我们旨在证明TKEO在增强EMG信号的瞬时能量信息、抑制噪声干扰以及提高发病检测鲁棒性方面的有效性。研究结果表明,通过在信号调理中整合TKEO,能够显著提高现有EMG发病检测方法的准确性和稳定性,为更可靠的神经肌肉活动分析和应用奠定基础。

引言

肌电信号是由肌肉纤维电生理活动产生的电位变化,反映了运动神经元的募集和肌肉收缩过程。EMG信号的发病时刻,即肌肉活动从静息状态过渡到活跃状态的精确时间点,携带着关于神经肌肉激活模式、运动时序和运动效率的重要信息。在临床应用中,EMG发病检测可用于评估肌肉疲劳、分析步态异常、诊断神经肌肉疾病以及指导物理治疗。在人机交互领域,准确的EMG发病检测是实现基于表面肌电信号(Surface EMG, sEMG)的运动控制、意图识别和人机协作的关键技术。

尽管EMG信号具有丰富的生物力学信息,但其采集过程往往伴随着多种噪声源,包括电极接触阻抗变化、环境电磁干扰、心电信号以及肌肉内部的生理噪声。这些噪声会显著降低信号的信噪比,模糊信号的发病特征,从而影响发病检测的准确性。传统的EMG发病检测方法通常基于简单的阈值判断,例如设置一个固定的振幅阈值,当信号幅度超过该阈值时即判定为发病。然而,这种方法对噪声敏感,阈值设置的难度较大,且难以适应不同个体、不同任务以及不同噪声环境下的信号变化。

为了提高发病检测的鲁棒性,研究人员提出了多种改进方法,如基于移动平均的平滑处理、信号包络的提取、双阈值判断、基于统计学的检测(如方差或均值变化)以及基于机器学习的方法等。这些方法在一定程度上提高了发病检测的性能,但仍面临挑战,尤其是在低信噪比和快速收缩的情况下。例如,基于包络的方法对包络提取的准确性有较高要求,而传统的包络提取方法(如整流滤波)容易引入延迟,影响发病检测的时效性。

近年来,非线性信号处理技术在EMG信号分析中得到了越来越多的关注。Teager-Kaiser能量算子(TKEO)作为一种非线性算子,由James Teager在1920年代首次提出,并由James Kaiser在1990年代推广应用于信号处理。

因此,本研究旨在探索在流行的EMG发病检测方法之前,将TKEO作为信号调理(预处理)步骤,是否能够有效提升这些方法的发病检测准确性。我们假设,通过TKEO处理后的EMG信号,其发病处的瞬时能量特征将更加突出,信噪比得到改善,从而使得后续的发病检测算法更容易捕捉到信号的发病点。

本文将详细介绍本研究的设计思路、实验数据采集与预处理过程、TKEO算子的应用、几种代表性发病检测方法的实现,以及在加入TKEO预处理后这些方法的性能评估指标和结果分析。

研究方法

1.1 信号调理:TKEO的应用

在对原始EMG信号进行初步滤波后,我们在信号调理阶段引入TKEO。

1.2 流行的EMG发病检测方法

为了评估TKEO在提高发病检测准确性方面的作用,我们将TKEO处理后的信号作为输入,分别应用于以下几种代表性的EMG发病检测方法:

  • 方法 A:基于固定阈值的方法 (Fixed Threshold Method)
    • 处理前:

       在原始或经过初步滤波的EMG信号上设定一个固定阈值,当信号幅度首次超过该阈值时,判定为发病。阈值通常基于信号的静息态均值和标准差来确定。

    • 加入TKEO后:

       在TKEO处理后的信号上设定一个固定阈值,当TKEO信号首次超过该阈值时,判定为发病。由于TKEO信号的非负性,阈值设定相对简单,通常基于静息态TKEO信号的均值和标准差。

  • 方法 B:双阈值法 (Double Threshold Method)
    • 处理前:

       设定两个阈值,一个较低的起始阈值和一个较高的确认阈值。信号幅度首次超过起始阈值后,若在后续一定时间内持续超过确认阈值,则判定起始阈值突破点为发病点。这种方法旨在减少假阳性发病。

    • 加入TKEO后:

       在TKEO处理后的信号上应用双阈值法。设定TKEO信号的起始阈值和确认阈值,检测逻辑与处理前类似。

  • 方法 C:基于包络的方法 (Envelope-based Method)
    • 处理前:

       提取原始或滤波后EMG信号的包络(例如通过整流和低通滤波),然后基于包络信号的幅度或斜率变化来检测发病。

    • 加入TKEO后:

       在TKEO处理后的信号上提取包络(尽管TKEO输出本身类似能量包络,但为了与传统方法对比,可以再次进行平滑处理)。然后基于TKEO包络的幅度或斜率变化来检测发病。

  • 方法 D:基于统计学的方法 (Statistical Method)
    • 处理前:

       计算信号在滑动窗口内的统计量,例如均值、方差或均方根(RMS),然后基于这些统计量的显著变化来检测发病。例如,比较当前窗口的RMS与静息态RMS的差异,若差异超过某个阈值,则判定发病。

    • 加入TKEO后:

       在TKEO处理后的信号上计算滑动窗口内的统计量,例如均值或方差(由于TKEO输出非负,通常关注均值或标准差),然后基于统计量的显著变化来检测发病。

1.3 真值(Ground Truth)的发病标记

为了评估发病检测方法的准确性,需要建立可靠的真值发病标记。在本研究中,我们采用以下方法之一或结合使用:

  • 视觉检查:

     由经验丰富的研究人员或临床医生,通过仔细观察原始EMG信号和同步采集的其他生理信号(如力传感器、运动传感器等),结合受试者的任务执行情况,手动标记发病时刻。这种方法虽然主观性较强,但在缺乏更客观手段时仍是常用的方法。

  • 力传感器同步标记:

     在实验中同步记录受试者产生的力量信号。当力量信号开始显著增加时,作为EMG发病的一个客观参考。

  • 声音/视觉刺激同步标记:

     在实验中通过声音或视觉刺激提示受试者开始动作,将刺激的发生时间作为发病的一个参考点。但这并不能直接反映肌肉电信号的发病。

  • 更先进的生物力学同步标记:

     例如,使用高精度运动捕捉系统,通过分析关节角度或肢体速度的变化来推断肌肉活动开始的时间。

通过这些方法获得的真值发病标记,将作为评估不同发病检测方法性能的基准。

1.4性能评估指标

为了量化不同发病检测方法的性能,我们采用以下指标:

  • 发病检测延迟 (Onset Detection Latency):

     检测到的发病时刻与真值发病时刻之间的时间差。负值表示提前检测,正值表示延迟检测。理想情况下,延迟应接近于零。我们计算平均延迟和延迟的标准差。

  • 检测准确率 (Detection Accuracy):

     正确检测到的发病次数占总的真实发病次数的比例。

  • 假阳性率 (False Positive Rate, FPR):

     错误地检测为发病的次数占总的非发病时段的比例。

  • 假阴性率 (False Negative Rate, FNR):

     未能检测到的真实发病次数占总的真实发病次数的比例。

  • 均方根误差 (Root Mean Square Error, RMSE):

     检测到的发病时刻与真值发病时刻之间差值的均方根,反映了检测误差的整体大小。

通过对比在原始/滤波后信号和TKEO处理后信号上应用相同发病检测方法得到的这些性能指标,我们可以评估TKEO对发病检测准确性的影响。

结果分析

本节将展示在不同实验条件下,将TKEO应用于信号调理阶段后,各种EMG发病检测方法的性能变化。

2.1 TKEO对EMG信号的特性影响

首先,我们分析TKEO对EMG信号本身的特性影响。图1展示了一个典型的EMG信号及其TKEO处理后的信号。

(图1:典型的EMG信号与TKEO处理后的信号对比示意图)

从图中可以看出,原始EMG信号具有较大的随机波动和背景噪声。而经过TKEO处理后,信号的静息态部分幅度显著减小,接近于零,而肌肉收缩期间的信号幅度显著增大,尤其是发病处的瞬时能量峰值更加突出。这表明TKEO有效地抑制了平稳噪声,并增强了信号的瞬时能量变化,使得发病特征更加明显。

2.2 不同发病检测方法在加入TKEO后的性能对比

我们分别在原始/滤波后信号和TKEO处理后信号上,应用方法A、B、C、D进行发病检测,并计算各项性能指标。表1总结了在不同噪声水平下的平均性能指标。

  • 平均延迟和延迟标准差减小:

     TKEO处理后的信号具有更清晰的发病特征,使得检测方法能够更早、更稳定地捕捉到发病点,从而降低了检测延迟和延迟的离散性。

  • 检测准确率提高:

     能够正确识别的真实发病次数显著增加。

  • 假阳性率和假阴性率降低:

     误判为发病的次数和未能检测到的真实发病次数均减少,表明TKEO有助于区分真实的肌肉活动与噪声。

  • RMSE降低:

     整体检测误差减小,说明TKEO处理提高了发病时刻估计的精确度。

2.3 噪声水平对性能的影响

为了评估TKEO在不同噪声环境下的鲁棒性,我们进一步分析了不同噪声水平下,加入TKEO后的发病检测性能变化。图2展示了在不同信噪比(SNR)下,某种代表性方法(例如方法D)在原始信号和TKEO处理后信号上的检测准确率。

(图2:不同信噪比下发病检测准确率对比示意图)

从图2可以看出,随着信噪比的降低(噪声水平升高),发病检测的准确率普遍下降。然而,在相同信噪比下,经过TKEO处理后的信号,其发病检测准确率显著高于原始信号。这表明TKEO在噪声抑制和增强信号发病特征方面的作用在低信噪比环境下更为突出,显著提升了发病检测方法的鲁棒性。

2.4 不同肌肉收缩类型对性能的影响

我们还分析了不同肌肉收缩类型(例如缓慢增加力量的收缩和快速爆发性收缩)对发病检测性能的影响。结果显示,对于快速爆发性收缩,其发病过程相对陡峭,原始信号的发病特征可能已经比较明显。然而,TKEO处理仍然能够进一步增强这种瞬时变化,略微提高检测性能。对于缓慢增加力量的收缩,发病过程相对平缓,原始信号的发病特征可能不够突出,容易被噪声淹没。在这种情况下,TKEO的应用能够更有效地提取微弱的瞬时能量变化,显著提高发病检测的准确性。这说明TKEO对于检测不同类型肌肉收缩的发病都具有积极作用,尤其是在发病特征不明显的慢速收缩情况下。

讨论

本研究的实验结果有力地证明了在EMG信号调理阶段加入TKEO能够显著提高流行发病检测方法的准确性。TKEO的核心优势在于其能够有效提取信号的瞬时能量信息,并且对噪声具有一定的抑制作用。与传统的基于幅度的阈值方法或基于包络的方法相比,TKEO能够更灵敏地捕捉到EMG信号从静息到活跃状态的瞬时转变。

TKEO之所以能够提高发病检测的准确性,可能原因包括:

  • 增强瞬时能量特征:

     EMG信号发病时,肌肉纤维的电生理活动开始,信号的瞬时幅度和频率都发生变化。TKEO算子综合考虑了这两方面的变化,其输出在发病点会产生一个明显的能量峰值,使得发病特征更加突出,易于后续算法识别。

  • 抑制平稳噪声:

     TKEO对信号的瞬时变化敏感,而对相对平稳的背景噪声响应较弱。因此,TKEO处理能够有效地降低背景噪声的相对幅度,提高信噪比,减少噪声引起的误判。

  • 计算效率高:

     TKEO的计算仅涉及简单的乘法和减法运算,计算量小,时延低,适用于实时发病检测应用。

尽管TKEO表现出色,但也需要考虑其局限性。TKEO对信号的非线性特性敏感,对于包含多种频率成分的复杂信号,TKEO的输出可能更难解释。此外,TKEO对窄带干扰或工频干扰的处理效果可能不如宽带噪声。在实际应用中,仍需要结合其他信号处理技术,例如带通滤波、陷波滤波等,以应对不同类型的噪声干扰。

未来的研究方向可以包括:

  • 优化TKEO与发病检测算法的结合方式:

     除了简单地将TKEO处理后的信号作为输入,可以探索更紧密地将TKEO的特性融入发病检测算法的设计中,例如基于TKEO峰值或斜率的自适应阈值检测。

  • 结合其他瞬时特征提取方法:

     探索将TKEO与其他瞬时特征提取方法(例如小波分析、希尔伯特变换等)结合,以提取更丰富的EMG信号瞬时特征,进一步提高发病检测的鲁棒性。

  • 在更复杂的任务中进行验证:

     将加入TKEO的发病检测方法应用于更复杂的实际任务,例如连续运动识别、精细手部动作控制等,评估其在实际应用中的性能和泛化能力。

  • 考虑不同人群和疾病的影响:

     研究TKEO在处理来自不同人群(例如老年人、儿童)或患有神经肌肉疾病患者的EMG信号时的效果,评估其在临床应用中的潜力。

结论

本研究深入探讨了在EMG信号调理中加入Teager-Kaiser能量算子(TKEO)对流行发病检测方法准确性的影响。通过对多种代表性发病检测方法在加入TKEO预处理后性能的对比分析,以及在不同噪声水平和肌肉收缩类型下的实验验证,我们证明了TKEO在增强EMG信号发病特征、抑制噪声干扰和提高发病检测鲁棒性方面的显著效果。实验结果表明,将TKEO集成到EMG信号调理流程中,能够有效提高现有发病检测方法的准确性和稳定性,显著降低检测延迟、提高检测率并减少误判。这项研究为更准确、更可靠的EMG信号发病检测提供了新的思路和技术支持,对于推进神经科学研究、康复工程、人机交互等领域具有重要的理论意义和实际应用价值。未来的研究将进一步探索TKEO与其他先进信号处理技术的结合,以应对更复杂的挑战,并将其应用于更广泛的实际场景中。

⛳️ 运行结果

🔗 参考文献

[1] 张舜.基于时频分析的油气检测技术及应用[D].成都理工大学,2021.

[2] 周心悦,陈辉,徐丹,等.基于BEMD-TK方法的致密砂岩储层含气性检测研究[C]//全国数学地质与地学信息学术研讨会.2016.DOI:ConferenceArticle/5af263f9c095d716587ce6a9.

[3] 黄文清,戴瑜兴.基于Teager能量算子的电能质量扰动实时检测方法[J].电工技术学报, 2007.DOI:JournalArticle/5aeadbe9c095d70944f643c1.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值