【配电网规划】SOCPR和基于线性离散最优潮流(OPF)模型的配电网规划( DNP )附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。

🍎 往期回顾关注个人主页:Matlab科研工作室

🍊个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。

🔥 内容介绍

配电网作为电力系统末端连接用户的关键基础设施,其规划的科学性与合理性直接关系到电网的安全、可靠、经济运行以及供电质量。传统的配电网规划方法往往侧重于网络结构和容量的静态优化,较少充分考虑系统在实际运行过程中的各种约束与运行模式。随着分布式电源、储能系统以及主动负荷的接入日益增多,配电网的运行特性变得更加复杂和动态。因此,在配电网规划中纳入系统运行约束考量(System Operational Constraints in Planning, SOCPR)变得尤为重要。本文深入探讨了SOCPR在配电网规划中的意义,并重点研究了基于线性离散最优潮流(Optimal Power Flow, OPF)模型在实现SOCPR下的配电网规划(Distribution Network Planning, DNP)中的应用。通过将配电网规划问题建模为包含运行约束的优化问题,特别是采用线性离散的OPF模型,可以有效地处理规划决策(如新建线路、变电站、分布式资源选址定容)的离散性以及运行约束(如节点电压、支路潮流、设备容量)的连续性和非线性特征。本文详细阐述了基于线性离散OPF模型的DNP问题构建,包括目标函数、约束条件以及求解方法,并分析了其在提高规划精度、降低运行风险和提升系统整体效益方面的优势。

关键词: 配电网规划;系统运行约束;最优潮流;线性离散模型;分布式电源;储能系统;有源配电网

1. 引言

配电网规划是电力系统规划的重要组成部分,其目标是在满足未来负荷增长、供电可靠性以及用户需求的基础上,确定电网的结构、设备选型和容量配置,从而实现投资和运行成本的最小化或效益的最大化。传统的配电网规划,特别是在缺乏大量分布式资源接入的时代,更多地关注电网的静态结构优化,例如主干网架的搭建、变电站的布点和容量确定、以及线路的路径选择和截面优化。然而,随着高比例分布式电源(如光伏、风电)、储能系统(ESS)以及电动汽车等主动负荷的广泛接入,配电网的运行模式发生了深刻变化。潮流由单向变为双向甚至多向,电压波动加剧,短路电流特性改变,运行中的约束条件(如节点电压越限、设备过载、继电保护配合等)变得更加突出且动态。

在这种背景下,仅仅基于静态负荷预测和可靠性指标进行的规划已难以适应现代配电网的运行要求。如果在规划阶段未能充分考虑系统在不同运行场景下的运行约束,可能导致规划方案在实际运行中出现频繁的越限问题,需要额外的运行控制措施(如切机、切负荷),从而降低供电可靠性和经济性,甚至影响电网的安全稳定运行。因此,将系统运行约束纳入配电网规划过程,即SOCPR,已成为当前配电网规划领域的重要研究方向。

SOCPR的核心思想是在规划决策的同时,评估规划方案在典型或关键运行场景下的运行性能,并通过优化手段确保规划方案在运行层面上是可行且高效的。这要求规划模型能够捕捉配电网的运行特性,特别是潮流分布、电压分布以及设备负载等。最优潮流(OPF)模型作为一种强大的分析工具,能够求解在给定网络拓扑和设备参数下,满足各种运行约束的最优运行状态,因此为实现SOCPR下的配电网规划提供了重要的技术支撑。

然而,配电网规划问题本身具有离散性(例如,是否新建变电站、选择哪条线路路径、新增分布式电源的选址等),而传统的OPF模型通常是连续的。将离散的规划变量与连续的运行变量耦合在一个模型中,并同时考虑非线性的潮流方程,会形成一个复杂的混合整数非线性规划(MINLP)问题,其求解难度巨大,尤其是对于大规模配电网。为了克服这一挑战,研究人员提出了将OPF模型进行线性化处理,并结合离散规划变量,形成混合整数线性规划(MILP)模型或混合整数二次规划(MIQP)模型。其中,基于线性离散OPF模型的配电网规划方法,因其能够在一定程度上简化问题复杂度,并利用成熟的整数规划求解器进行求解,受到了广泛关注。

本文旨在系统地阐述SOCPR在配电网规划中的必要性与挑战,并详细介绍基于线性离散最优潮流模型应用于配电网规划的原理、模型构建以及潜在优势。文章结构安排如下:第二节回顾配电网规划的相关背景与挑战;第三节深入探讨SOCPR的内涵及其在配电网规划中的重要性;第四节详细介绍基于线性离散最优潮流模型的构建及其在DNP中的应用;第五节分析基于该方法的优势与面临的挑战;第六节总结全文并展望未来研究方向。

2. 配电网规划的背景与挑战

配电网规划是一项复杂的系统工程,涉及长期投资决策,对未来的电网发展具有深远影响。传统的配电网规划主要面临以下挑战:

  • 负荷增长不确定性:

     未来负荷的增长模式、空间分布和时间变化具有不确定性,特别是新兴负荷(如电动汽车充电)和主动负荷(如负荷响应)的出现,使得负荷预测变得更加复杂。

  • 可靠性要求:

     配电网需要满足一定的供电可靠性指标,如年平均停电时间和停电频率,这要求在规划中考虑冗余性、设备可靠性以及故障隔离能力。

  • 投资成本与运行成本的权衡:

     规划目标通常是在满足可靠性和服务质量要求的前提下,实现总成本(包括建设投资和未来运行维护成本)的最小化。如何在初期投资与未来运行效益之间进行权衡是一个重要问题。

  • 土地资源和环境限制:

     变电站选址、线路走廊建设等受到土地资源和环境因素的约束。

  • 新技术接入:

     分布式电源、储能系统、微电网等新技术的接入,改变了电网的潮流分布和运行特性,对传统的规划方法提出了挑战。这些技术的间歇性、波动性以及可控性需要更精细的建模与分析。

在这些挑战的基础上,缺乏对系统运行约束的充分考虑是传统配电网规划的显著不足。规划方案可能在理论上满足静态要求,但在实际运行中,尤其是在极端负荷场景、设备故障或分布式电源出力波动时,可能出现频繁的电压越限、支路过载、甚至设备损坏等问题,严重影响供电质量和电网安全。

3. 系统运行约束考量(SOCPR)在配电网规划中的重要性

SOCPR强调在配电网规划过程中,需要预判和评估规划方案在未来各种典型或极端运行场景下的运行性能,并确保其满足运行约束。其重要性体现在:

  • 提高规划方案的可行性和有效性:

     通过在规划阶段考虑运行约束,可以避免规划出在实际运行中无法有效执行的方案,减少后续的运行控制成本和风险。

  • 提升电网运行的安全性与可靠性:

     确保规划方案在各种运行条件下都能满足电压、潮流等安全约束,避免设备损坏和停电事故。

  • 优化资源配置和利用效率:

     通过考虑运行约束,可以更准确地评估不同规划方案(例如,新建线路、增容变电站、部署分布式电源或储能)对电网运行性能的影响,从而选择最优的资源配置方案,提高电网的运行效率,降低网损。

  • 适应有源配电网的特性:

     在分布式电源和储能广泛接入的有源配电网中,潮流双向互动、电压支撑和控制、功率平衡等运行约束变得尤为复杂。SOCPR能够帮助规划方案更好地适应这些新特性,充分发挥分布式资源的效益。

  • 支持智能配电网发展:

     智能配电网强调运行的灵活性和可观可控。在规划阶段考虑运行约束,有助于构建一个更易于实现智能控制和优化的电网基础架构。

SOCPR的引入使得配电网规划问题从一个纯粹的静态网络优化问题,转变为一个包含时间和运行维度、更加复杂的动态优化问题。这要求规划模型能够有效耦合规划决策与运行行为。

4. 基于线性离散最优潮流模型的配电网规划

为了在配电网规划中实现SOCPR,并将离散的规划决策与连续的运行行为耦合,同时兼顾模型的可求解性,研究人员提出了基于线性离散最优潮流模型的配电网规划方法。该方法的核心是将复杂的交流潮流方程进行线性化处理,并将规划决策变量(通常是二元变量或整数变量)与线性化的潮流方程及运行约束相结合,构建一个混合整数线性规划(MILP)模型。

4.1 最优潮流(OPF)模型回顾

传统的交流OPF模型通常是一个非线性优化问题,目标函数可以是最小化发电成本、网损等,约束条件包括:

  • 功率平衡方程:

     每个节点的注入功率等于流出功率(基于基尔霍夫电流定律)。

  • 支路潮流方程:

     基于支路阻抗、节点电压和相角差计算支路潮流(基于欧姆定律)。

  • 节点电压约束:

     各节点电压幅值在安全范围内。

  • 支路潮流或设备容量约束:

     支路电流或功率、变压器容量等不超过其额定值。

  • 发电机出力约束:

     发电机有功和无功出力在额定范围内。

  • 其他运行约束:

     例如变压器分接头位置、开关状态等。

交流潮流方程(如极坐标形式下的节点功率平衡方程)是高度非线性的,使得直接将其与离散规划变量结合形成MINLP模型难以求解。

4.2 交流潮流的线性化

为了将OPF模型嵌入到线性离散的规划框架中,需要对交流潮流方程进行线性化。常用的线性化方法包括:

  • 直流潮流模型(DC Power Flow):

     忽略支路电阻和节点电压幅值变化,仅考虑线路电抗和节点相角差与有功功率的关系。适用于输电网,但在配电网中由于支路R/X比值较高,节点电压波动较大,直流潮流模型的精度可能不足。

  • 近似线性化交流潮流模型:

     基于对交流潮流方程在某个参考点进行泰勒级数展开并保留一阶项,或者基于某些假设(如节点电压接近1 p.u.,相角差较小)进行简化。例如,DistFlow潮流方程的线性化版本常用于配电网,其基于径向网络的特点,将节点电压的平方差近似为节点之间的功率损耗相关项,将支路潮流近似为流经该支路的所有下游负荷和电源净功率之和。

  • 基于松弛的线性化方法:

     利用凸优化理论,对非凸的交流潮流问题进行松弛,例如半定规划(SDP)松弛或二阶锥规划(SOCP)松弛。虽然这些方法能够找到原问题的最优解或近似最优解,但其建模和求解复杂度相对较高。

  • 分段线性化:

     将非线性函数在一定范围内分成多个线性段进行近似。

在基于线性离散OPF模型的配电网规划中,常用的线性化方法是基于DistFlow潮流方程的近似线性化或更精细的线性化交流潮流模型,以在精度和计算效率之间取得平衡。例如,可以近似认为支路有功潮流主要与节点相角差有关,支路无功潮流主要与节点电压幅值差有关。

4.3 基于线性离散OPF模型的DNP构建

基于线性离散OPF模型的DNP问题通常被建模为一个MILP问题。

目标函数: 目标函数通常包含投资成本、运行成本(如网损成本、购电成本、设备维护成本)以及可靠性成本等。为了在规划中考虑运行约束,可以将典型的运行成本(如网损成本)通过OPF模型计算得到,并将其纳入目标函数中。

目标函数示例:

约束条件: 约束条件主要包括:

  • 规划决策约束:

     描述规划方案的离散选择,例如,每个候选变电站只能选择建设或不建设(二元变量),每个候选线路只能选择建设或不建设。

  • 拓扑约束:

     描述电网的连接关系,例如确保电网的连通性,满足辐射状网络结构等(对于配电网而言)。

  • 功率平衡约束:

     在每个运行场景下,每个节点的注入功率等于流出功率。这些方程通常采用线性化后的潮流方程表示。

  • 节点电压约束:

     在每个运行场景下,每个节点的电压幅值(或其线性化表示)在安全范围内。

  • 支路潮流或设备容量约束:

     在每个运行场景下,每条支路的潮流、变压器负载等不超过其容量限制。

  • 分布式电源和储能约束:

     在每个运行场景下,分布式电源的出力范围、储能系统的充放电功率和荷电状态(SOC)约束。

  • 协同约束:

     将规划决策与运行约束耦合起来的约束。例如,只有当某条候选支路被规划建设后,该支路才能在OPF模型中承载潮流并受到潮流容量约束。这通常通过大M法或特殊有序集(SOS)等方法实现。

线性离散OPF模型的关键要素:

  • 离散规划变量:

     例如二元变量表示是否建设某项设施。

  • 连续运行变量:

     例如节点电压(或其线性化变量)、支路潮流(或其线性化变量)、分布式电源出力、储能充放电功率等。

  • 线性化的潮流方程:

     将非线性的交流潮流方程近似为线性方程组。

  • 考虑多个运行场景:

     在模型中包含多个典型或极端运行场景,并通过场景概率加权运行成本。

  • 规划与运行的耦合约束:

     建立规划决策对运行约束的影响,以及运行约束对规划方案可行性和经济性的反馈。

4.4 求解方法

基于线性离散OPF模型的DNP问题是一个MILP问题,可以利用现有的成熟MILP求解器进行求解,例如CPLEX, Gurobi, Mosek等。然而,即使是MILP问题,当规划规模(候选设施数量)、运行场景数量以及电网节点数量较大时,问题规模也会非常庞大,求解时间可能很长。因此,对于大规模问题,可能需要采用分解算法(如Benders分解)、启发式算法或智能优化算法(如遗传算法、粒子群优化算法)与优化模型相结合的方法进行求解。

5. 基于线性离散OPF模型的DNP优势与挑战

优势:

  • 提高规划精度:

     能够更准确地评估规划方案在实际运行中的性能,避免规划方案在运行中出现的各种越限问题。

  • 降低运行风险和成本:

     通过在规划阶段考虑运行约束,可以减少运行时采取紧急控制措施的需求,提高运行的安全性、可靠性和经济性。

  • 更好地适应有源配电网:

     能够有效处理分布式电源、储能等新技术的接入带来的运行特性变化,充分发挥其潜力。

  • 模型的可求解性:

     相较于MINLP模型,MILP模型可以使用成熟的求解器,求解效率相对较高(对于中等规模问题)。

  • 支持多目标优化:

     可以方便地将经济性、可靠性、运行性能等多个目标纳入目标函数或约束条件中。

挑战:

  • 潮流线性化的精度问题:

     线性化潮流模型是近似的,可能牺牲一定的精度,特别是在电压波动较大的配电网或极端运行场景下。如何平衡精度与计算效率是一个关键问题。

  • 运行场景的选择:

     如何选择具有代表性的运行场景,以及如何处理场景概率的不确定性,对规划结果的准确性有重要影响。

  • 计算复杂度:

     即使是MILP模型,对于大规模配电网和大量运行场景,问题规模依然庞大,求解时间可能成为瓶颈。

  • 模型假设与实际运行的偏差:

     模型中使用的参数(如负荷、分布式电源出力预测)存在不确定性,模型假设可能与实际运行情况存在偏差。

  • 多时间尺度耦合:

     规划是长期决策,而运行是短时间尺度行为。如何在规划模型中有效耦合不同时间尺度的行为,例如储能的长时间尺度充放电策略对规划的影响,是一个复杂问题。

6. 结论与展望

将系统运行约束考量(SOCPR)融入配电网规划是应对现代有源配电网复杂运行特性和提升规划质量的必然趋势。基于线性离散最优潮流(OPF)模型的配电网规划(DNP)方法,通过将规划决策的离散性与运行约束的连续性耦合,并在一定程度上简化潮流模型,为在规划中实现SOCPR提供了一种可行且有效的方法。该方法能够有效处理分布式电源、储能等新技术的接入,提高规划方案在实际运行中的可行性和效益,对于构建安全、可靠、经济、高效的现代配电网具有重要意义。

然而,基于线性离散OPF模型的DNP方法仍面临一些挑战,包括潮流线性化的精度、运行场景的选择、计算复杂度以及模型不确定性等。未来的研究可以从以下几个方面深入:

  • 更精确的潮流线性化方法:

     研究适用于配电网特性且能够在保证计算效率的同时提高精度的潮流线性化技术。

  • 不确定性处理:

     考虑负荷、分布式电源出力等不确定性因素对规划方案运行性能的影响,采用鲁棒优化或随机优化方法提高规划方案的鲁棒性。

  • 高效求解算法:

     针对大规模配电网的规划问题,研究适用于基于线性离散OPF模型的分解算法、并行计算或基于机器学习的加速求解方法。

  • 多时间尺度耦合:

     研究在规划模型中更精细地考虑分布式资源的长时间尺度运行特性,例如储能的生命周期优化。

  • 与其他规划内容的协同:

     将基于运行约束的规划与其他规划内容(如可靠性规划、无功优化规划)进行协同考虑。

⛳️ 运行结果

🔗 参考文献

[1] 吴薇,于辉,孙文兵,等.离散最优潮流的混合整数线性规划问题[J].电子乐园, 2019.

[2] 赵婷婷,赵凤展,巨云涛,等.基于定常海森矩阵的配电网三相最优潮流模型[J].电力系统自动化, 2018, 42(15):7.DOI:10.7500/AEPS20170507003.

[3] 白晓清.含机组组合的电力系统动态最优潮流——半定规划模型与方法[D].广西大学,2010.DOI:10.7666/d.y1953339.

📣 部分代码

🎈 部分理论引用网络文献,若有侵权联系博主删除

 👇 关注我领取海量matlab电子书和数学建模资料 

🏆团队擅长辅导定制多种科研领域MATLAB仿真,助力科研梦:

🌈 各类智能优化算法改进及应用
生产调度、经济调度、装配线调度、充电优化、车间调度、发车优化、水库调度、三维装箱、物流选址、货位优化、公交排班优化、充电桩布局优化、车间布局优化、集装箱船配载优化、水泵组合优化、解医疗资源分配优化、设施布局优化、可视域基站和无人机选址优化、背包问题、 风电场布局、时隙分配优化、 最佳分布式发电单元分配、多阶段管道维修、 工厂-中心-需求点三级选址问题、 应急生活物质配送中心选址、 基站选址、 道路灯柱布置、 枢纽节点部署、 输电线路台风监测装置、 集装箱调度、 机组优化、 投资优化组合、云服务器组合优化、 天线线性阵列分布优化、CVRP问题、VRPPD问题、多中心VRP问题、多层网络的VRP问题、多中心多车型的VRP问题、 动态VRP问题、双层车辆路径规划(2E-VRP)、充电车辆路径规划(EVRP)、油电混合车辆路径规划、混合流水车间问题、 订单拆分调度问题、 公交车的调度排班优化问题、航班摆渡车辆调度问题、选址路径规划问题、港口调度、港口岸桥调度、停机位分配、机场航班调度、泄漏源定位
🌈 机器学习和深度学习时序、回归、分类、聚类和降维

2.1 bp时序、回归预测和分类

2.2 ENS声神经网络时序、回归预测和分类

2.3 SVM/CNN-SVM/LSSVM/RVM支持向量机系列时序、回归预测和分类

2.4 CNN|TCN|GCN卷积神经网络系列时序、回归预测和分类

2.5 ELM/KELM/RELM/DELM极限学习机系列时序、回归预测和分类
2.6 GRU/Bi-GRU/CNN-GRU/CNN-BiGRU门控神经网络时序、回归预测和分类

2.7 ELMAN递归神经网络时序、回归\预测和分类

2.8 LSTM/BiLSTM/CNN-LSTM/CNN-BiLSTM/长短记忆神经网络系列时序、回归预测和分类

2.9 RBF径向基神经网络时序、回归预测和分类

2.10 DBN深度置信网络时序、回归预测和分类
2.11 FNN模糊神经网络时序、回归预测
2.12 RF随机森林时序、回归预测和分类
2.13 BLS宽度学习时序、回归预测和分类
2.14 PNN脉冲神经网络分类
2.15 模糊小波神经网络预测和分类
2.16 时序、回归预测和分类
2.17 时序、回归预测预测和分类
2.18 XGBOOST集成学习时序、回归预测预测和分类
2.19 Transform各类组合时序、回归预测预测和分类
方向涵盖风电预测、光伏预测、电池寿命预测、辐射源识别、交通流预测、负荷预测、股价预测、PM2.5浓度预测、电池健康状态预测、用电量预测、水体光学参数反演、NLOS信号识别、地铁停车精准预测、变压器故障诊断
🌈图像处理方面
图像识别、图像分割、图像检测、图像隐藏、图像配准、图像拼接、图像融合、图像增强、图像压缩感知
🌈 路径规划方面
旅行商问题(TSP)、车辆路径问题(VRP、MVRP、CVRP、VRPTW等)、无人机三维路径规划、无人机协同、无人机编队、机器人路径规划、栅格地图路径规划、多式联运运输问题、 充电车辆路径规划(EVRP)、 双层车辆路径规划(2E-VRP)、 油电混合车辆路径规划、 船舶航迹规划、 全路径规划规划、 仓储巡逻
🌈 无人机应用方面
无人机路径规划、无人机控制、无人机编队、无人机协同、无人机任务分配、无人机安全通信轨迹在线优化、车辆协同无人机路径规划
🌈 通信方面
传感器部署优化、通信协议优化、路由优化、目标定位优化、Dv-Hop定位优化、Leach协议优化、WSN覆盖优化、组播优化、RSSI定位优化、水声通信、通信上传下载分配
🌈 信号处理方面
信号识别、信号加密、信号去噪、信号增强、雷达信号处理、信号水印嵌入提取、肌电信号、脑电信号、信号配时优化、心电信号、DOA估计、编码译码、变分模态分解、管道泄漏、滤波器、数字信号处理+传输+分析+去噪、数字信号调制、误码率、信号估计、DTMF、信号检测
🌈电力系统方面
微电网优化、无功优化、配电网重构、储能配置、有序充电、MPPT优化、家庭用电
🌈 元胞自动机方面
交通流 人群疏散 病毒扩散 晶体生长 金属腐蚀
🌈 雷达方面
卡尔曼滤波跟踪、航迹关联、航迹融合、SOC估计、阵列优化、NLOS识别
🌈 车间调度
零等待流水车间调度问题NWFSP 、 置换流水车间调度问题PFSP、 混合流水车间调度问题HFSP 、零空闲流水车间调度问题NIFSP、分布式置换流水车间调度问题 DPFSP、阻塞流水车间调度问题BFSP

👇 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值