EfficientNet v2来了 更快、更小、更强

源码测试,s模型78m多,还是挺多,我自己改了一版轻量级,3.4m,代码附在本文最后。

本文提出一种训练速度更快、参数量更少的卷积神经网络EfficientNetV2。我们采用了训练感知NAS与缩放技术对训练速度与参数量进行联合优化,NAS的搜索空间采用了新的op(比如Fused-MBConv)进行扩充。实验表明:相比其他SOTA方案,所提EfficientNetV2收敛速度更快,模型更小(6.8x)。

在训练过程中,我们可以通过逐步提升图像大小得到加速,但通常会造成性能掉点。为补偿该性能损失,我们提出了一种改进版的渐进学习方式,它自适应的根据图像大小调整正则化因子,比如dropout、数据增广。

受益于渐进学习方式,所提EfficientNetV2在CIFAR/Cars/Flowers数据集上显著优于其他模型;通过在ImageNet21K数据集上预训练,所提模型在ImageNet上达到了87.3%的top1精度,以2.0%精度优于ViT,且训练速度更快(5x-11x)。

在正式介绍EfficientNetV2之前,我们先简单看一下EfficientNet;然后引出训练感知

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值