基于Transformer的目标检测DETR

论文链接:https://www.ecva.net/papers/eccv_2020/papers_ECCV/papers/123460205.pdf

Transformer之前在NLP领域大放异彩,但是在CV界平平无奇。自从ECCV20这篇基于transformer的目标检测模型DETR发表以后,transformer在CV中应用的探索越来越广泛,今天先粗浅的解读一下这篇论文,剩下的慢慢学习。

在目标检测领域,Faster RCNN无疑是最经典的模型之一。但他需要很多anchor,proposal,以及非常复杂的后处理NMS过程,这些操作是比较冗余且耗时的。于是作者提出了一个simple的pipeline来实现目标检测,这个pipeline即文中的DETR。

在这里插入图片描述

这个DETR的流程非常的清晰简洁:首先一张image作为input,通过一个CNN进行特征提取,得到一张feature map;随后将feature map的二维拆成一维,当作序列数据喂入有着encoder-decoder结构的transformer,得到若干个( N N

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值