目标检测算法(三)YOLOv5 SPPF层的前身SPP-NET精细分析和讲解并附源码地址

SPP-NET是一种解决深度卷积神经网络对固定输入尺寸依赖的方案,通过空间金字塔池化层,将不同大小的特征图转换为固定长度的特征向量,适用于图像分类和物体检测任务,提高了网络的泛化能力和效率。在ILSVRC2014和PASCALVOC2012比赛中取得优异成绩,显示了其在处理多尺度输入图像时的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SPP-NET(Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition)是一篇由Kaiming He、Xiangyu Zhang、Shaoqing Ren和Jian Sun等人于2014年提出的论文,旨在提高深度卷积神经网络在图像分类和目标检测任务中的性能

在传统的卷积神经网络中,通常使用全连接层来将卷积和池化层提取的特征映射到固定长度的向量上,以便进行分类或检测。然而,全连接层需要固定大小的输入(例如640*640(YOLOV5)、32*32(LenNet)、224*224(ImageNet)),这使得网络无法处理尺寸不同的输入图像。因此,该论文提出了一种名为空间金字塔池化(Spatial Pyramid Pooling,SPP)的,用于解决输入图像尺寸不同的问题,并且可以在不同尺寸的输入图像上实现准确的分类和检测。

那么为什么之前的网络需要固定的输入呢?

在传统的卷积神经网络中,通常使用全连接层来将卷积和池化层提取的特征映射到固定长度的向量上,以便进行分类或检测。全连接层中的每个神经元都与前一层的所有神经元相连,因此需要固定大小的输入。如果输入的图像尺寸不同,那么全连接层的输入大小也会不同,这就导致了网络无法处理尺寸不同的输入图像.下面介绍一个简单的全连接层。

全连接层的输入需要是固定的,是因为全连接层中每个神经元都与前一层的所有神经元相连,因此需要固定大小的输入。如果输入的大小不同,那么全连接层的输入大小也会不同,这就会导致神经元之间的连接权重无法共享,从而增加了网络的参数量,使得网络更加复杂,训练难度也会增加。

数学上,假设前一层的输出是一个大小为 m×n 的矩阵,其中 m 是样本数,n 是特征数。如果使用全连接层将其映射到大小为 m×k 的矩阵,其中 k 是输出类别数,那么全连接层的权重矩阵大小为 n×k,需要训练的参数个数是 n×k。如果输入的特征数 n 不同,那么全连接层的权重矩阵大小也会不同,需要训练的参数个数也会不同。这就会导致网络的参数量随输入的大小而变化,使得网络更加复杂和难以训练。

类似于上图假设输入是X1xX2的矩阵, 其中每一条线赋予一个值(权重我们神经网络要训练的值)并赋予一个偏置b值,其中activate为激活函数。

因此为了解决这一问题作者提出本文的网络结构SPP-NET

那么为什么SPP-NET可以解决这一问题呢?

在SPP-Net出现之前,基于区域的深度神经网络(如R-CNN)通常使用选择性搜索(滑窗)算法来生成候选区域,然后对每个候选区域进行单独的卷积和池化操作,最后将池化后的特征向量输入到分类器中进行分类。

使用选择性搜索的方法存在以下劣势:

  1. 计算量大:选择性搜索算法需要对图像中的每个像素进行分割和合并,生成大量的候选区域。对每个候选区域进行卷积和池化操作需要大量的计算资源,使得这种方法的计算速度较慢。

  2. 存在重叠区域:由于选择性搜索算法是基于区域的,不同的区域之间可能存在重叠的部分。这会导致同一物体的不同部分被重复检测,增加了计算量和误检率。

  3. 不可变性较差:选择性搜索算法可能会生成过多或者过少的候选区域,这会导致同一物体在不同图像中生成不同数量的候选区域,使得模型对物体的不变性较差。

那么本文提出的SPP-NET是如何针对这一问题进行解决的呢?

为了解决这些问题,SPP-Net引入了空间金字塔池化(SPP)模块。在SPP-Net中,输入图像首先通过一个卷积神经网络进行特征提取。然后,在SPP层中进行池化操作,将卷积层的输出特征图(Feature Map)分成不同尺度的网格,对于每个网格,都对其内部进行池化操作,池化输出的结果拼接成一个固定长度的特征向量。这个特征向量可以用于后续的分类任务,下面的图是介绍从一张输入图上提取提特征图然后产生固定长度的特征向量然后输入到全连接层中进行分类的流程图。

 SPP-NET的核心就是上面所述的可以产生固定长度特征向量:SPP-Net通过空间金字塔池化将不同大小的特征图转换为固定长度的特征向量,使得网络输出的特征向量具有固定的维度。这种特征向量的固定长度使得网络的输出可以用于后续的分类任务,

空间金字塔(SPP)是如何将不同大小的特征图转换为固定长度的特征向量?

下面我将通过一个简单的例子来说明SPP-Net是如何解决选择性搜索问题的是如何将不同大小的特征图转换为固定长度的特征向量的。假设我们有一个输入图像大小为300✖300像素,由于我们希望网络能够处理不同大小的输入图像,因此我们先对输入图像进行卷积操作,得到一个特征图大小为15✖ 15✖ 1024其中分别表示一个特征图的宽度、高度和每个位置上的特征向量的维数。具体来说,在这个例子中,15✖ 15表示特征图的宽度和高度,1024表示每个位置上的特征向量的维数。然后,我们使用SPP层对特征图进行池化操作,将其分成1✖1、2✖2和3✖3三个尺度的网格,并对每个网格内部进行池化操作。最后,对于每个尺度,将池化输出的结果拼接成一个固定长度的特征向量。假设我们选择的池化操作是最大池化,每个网格内部的池化操作输出的结果是一个特征向量,我们将这些特征向量拼接起来,得到一个长度为1024✖(1+4+9)=15360的特征向量。这个特征向量可以作为分类器的输入,用于分类任务。

下面这个图诠释了上面的例子,方框内的部分即SPP部分,其分成1✖1、2✖2和4✖4三个尺度的网格进行特征向量的提取然后进行拼接固定长度的特征向量并将其输入到全连接层中用于分类任务,需要注意的是SPP通常在一个网络结构的最后一层,输出结果直接输入给检测头进行检测,或者输入给Neck部分进行特征向量的拼接操作以将不同尺度下的特征向量进行拼接提高检测和分类效率。

SPP-NET在哪里取得了成功? 

在ILSVRC2014比赛中,SPP-Net在物体检测任务上取得了第一名,比第二名提高了6.8%的检测准确率。同时,在图像分类任务上,SPP-Net在top-1准确率方面提高了1.2%。

在PASCAL VOC 2012数据集上,SPP-Net在物体检测任务上取得了第一名,比第二名提高了4.6%的检测准确率。

将SPP用于其它网络结果也取得了成功

OverFeat是一种基于卷积神经网络的物体识别系统如果不了解可以看我前面的文章点此处链接,由Sermanet等人在2013年提出。OverFeat网络结构比较简单,由卷积层和全连接层组成,但是需要对输入图像进行多尺度处理。在原始的OverFeat网络中,对于每个不同的尺度,需要单独训练一个网络,这会导致训练和测试时间的大幅增加。

通过将SPP层加入OverFeat网络中,Kaiming He等人成功地将网络改进为一个通用的多尺度物体识别系统,可以处理不同尺寸的输入图像,同时减少了训练和测试时间。在ILSVRC2013比赛中,SPP-Net在物体检测任务上取得了第二名的好成绩,比之前的最优方法提高了7.9%的检测准确率。

具体来说,Kaiming He等人在OverFeat网络的最后一个卷积层之后加入了SPP层,将特征图分成不同的尺度,对每个尺度内部进行池化操作,将池化结果拼接成一个固定长度的特征向量,作为分类器的输入。这个特征向量可以同时用于不同尺度的输入图像。

下面对SPP-NET和SPP进行一个总结

SPP-Net是一种基于卷积神经网络的图像分类和物体检测方法,其最显著的特点是引入了SPP(Spatial Pyramid Pooling)层,可以对任意大小的输入图像进行处理,从而提高了网络的泛化能力和效率。

SPP层是一种池化层,可以对不同尺寸的特征图进行池化操作,得到固定长度的特征向量。SPP层的输入可以是任意大小的特征图,输出是一个固定长度的特征向量,可以用于分类器的输入。

SPP-Net的优点包括:

  1. 对任意大小的输入图像进行处理,具有较好的泛化能力和适用性;
  2. 可以用于多种计算机视觉任务,包括图像分类、物体检测、场景分类等;
  3. 可以减少网络训练和测试时间,提高网络的效率;
  4. 在多个数据集和比赛中取得了不错的表现,证明了其有效性和通用性。

SPP-Net在OverFeat网络中的应用,更是将其推向了高峰。通过将SPP层加入OverFeat网络中,可以构建一个通用的多尺度物体识别系统,能够处理不同尺寸的输入图像,同时减少了训练和测试时间,取得了优秀的准确率和效率表现。

总之,SPP-Net和SPP层的提出,为卷积神经网络的发展带来了新的思路和方法,是计算机视觉领域的一次重要进展。

源码地址

最后附上Github源码地址

<think>好的,用户让我介绍一下SPPF。首先,我需要回忆一下SPPF的结构作用。SPPFYOLOv5中使用的空间金字塔池化快速,应该SPP有关联,但可能做了一些优化。 用户之前问过Stage,可能对CNN中的模块设计比较感兴趣,特别是提升模型性能的部分。SPPF作为池化,主要用于融合多尺度特征,增强感受野,同时保持计算效率。我需要解释清楚SPPFSPP的区别,比如结构上的行改串行,以及如何减少计算量。 然后,我需要考虑用户可能的背景。可能是学生或者刚入行的工程师,想要了解SPPF应用。因此,回答需要结构清晰,分点说明,同时用例子公式来辅助理解。比如,SPP个不同大小的池化行,而SPPF是串联使用多个相同大小的池化,这样在达到同样效果的同时减少参数。 另外,用户可能想知道为什么SPPF更快,所以需要对比两者的计算方式,比如SPP行结构需要多次处理,而SPPF的串联结构复用中间结果,减少计算量。可能需要用LaTeX公式来展示两者的处理过程,比如池化后的拼接操作。 还要提到应用场景,比如在YOLOv5中的位置,通常是在骨干网络的末端,帮助检测不同尺度的目标。以及实际效果,比如平衡准确率速度。 最后,总结SPPF的优势,比如高效的多尺度融合、轻量化即插即用,适合需要实时性的任务。确保回答符合之前的格式,分核心作用、结构对比、设计考量、实际应用等部分,保持结构清晰,使用中文术语,正确使用公式格式。</think>--- 在卷积神经网络(CNN)中,**SPPF(Spatial Pyramid Pooling - Fast)**是空间金字塔池化(SPP)的改进版本,由YOLOv5首次提出。它通过多尺度池化操作融合不同感受野的特征,增强模型对目标尺度的鲁棒性,同时显著降低计算量,广泛应用于目标检测等任务。 --- ### **1. 核心作用** - **多尺度特征融合**:通过不同尺寸的池化核捕捉多粒度上下文信息(如局部细节全局语义)。 - **固定特征图输出**:无论输入分辨率如何,输出固定尺寸的特征向量,避免全连接对输入尺寸的依赖。 - **轻量化设计**:优化池化排列方式,减少重复计算,提升推理速度。 --- ### **2. SPPSPPF结构对比** #### **(1) 经典SPP(Spatial Pyramid Pooling)** - **结构**: 行使用多个最大池化(池化核尺寸不同),输出拼接后传递到后续网络。 例如:输入特征图尺寸为$H \times W$,池化核尺寸为$5\times5$, $9\times9$, $13\times13$,输出特征维度为: $$ \text{通道数} \times (n_1^2 + n_2^2 + n_3^2) \quad \text{其中} \ n_i = \left\lfloor \frac{H}{\text{池化核尺寸}_i} \right\rfloor $$ - **缺点**: 行池化导致计算冗余(如大池化核覆盖小池化核区域)。 #### **(2) SPPF(快速版SPP)** - **结构改进**: 将**行池化**改为**串行重复池化**,利用**相同尺寸的池化核叠加**实现等效多尺度融合。 例如:使用$5\times5$池化核,连续进行3次池化(等效于$5\times5$, $9\times9$, $13\times13$的SPP效果)。 **数学推导**: 设输入特征图尺寸为$H \times W$,每次池化步长(Stride)为1,填充(Padding)为2,则: - 第1次池化后尺寸: $$ H' = \left\lfloor \frac{H + 2 \times 2 - 5}{1} + 1 \right\rfloor = H $$ - 第2次池化后尺寸仍为$H \times W$,依次类推。 - **计算优化**: 通过复用中间结果减少计算量,公式推导如下: $$ \text{SPPF计算量} \approx \frac{1}{3} \times \text{SPP计算量} $$ --- ### **3. 设计考量** - **池化核选择**:通常使用$5\times5$核,平衡感受野计算效率。 - **步长与填充**:步长固定为1,填充为核尺寸的一半(如$5\times5$核填充2),维持特征图尺寸不变。 - **顺序叠加**:多次相同池化操作的串联等效于更大核的池化,例如: $$ \text{两次} \ 5\times5 \ \text{池化} \ \Rightarrow \ 9\times9 \ \text{等效感受野} $$ --- ### **4. 实际应用** #### **(1) YOLOv5中的SPPF** - **位置**:通常放置在骨干网络(Backbone)末端,连接Neck(特征金字塔)之前。 - **结构代码示例**(PyTorch风格伪代码): ```python class SPPF(nn.Module): def __init__(self, c1, c2, k=5): # 输入通道c1,输出通道c2,池化核k super().__init__() self.cv1 = Conv(c1, c2, 1) # 1x1卷积压缩通道 self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k//2) self.cv2 = Conv(c2*4, c2, 1) # 合4次池化结果(含始特征) def forward(self, x): x = self.cv1(x) y1 = self.m(x) # 第1次池化 y2 = self.m(y1) # 第2次池化(等效9x9) y3 = self.m(y2) # 第3次池化(等效13x13) return self.cv2(torch.cat([x, y1, y2, y3], 1)) ``` #### **(2) 性能影响** - **精度**:与SPP相比,mAP(平均精度)几乎持平(差异<0.2%)。 - **速度**:推理速度提升约20%-30%(以YOLOv5s为例)。 - **显存占用**:减少约15%的GPU内存消耗。 --- ### **5. 总结** SPPF通过**串联重复池化**替代SPP行结构,在保持多尺度特征融合能力的同时,显著优化了计算效率。其核心优势包括: 1. **高效多尺度融合**:等效覆盖大感受野,增强模型对尺度变化的适应性。 2. **轻量化**:减少重复计算,更适合实时检测任务(如YOLO系列)。 3. **即插即用**:可无缝集成到大多数CNN架构中,无需调整输入尺寸。 在实际任务中,若需平衡检测精度与速度(如嵌入式设备部署),SPPF是替代SPP的优选方案。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值