【RT-DETR有效改进】双层路由注意力机制 | 适合多种检测场景的BiFormer(Bi-level Routing Attention)

BiFormer是一种视觉Transformer模型,通过双层路由注意力机制提高目标检测性能。上层路由捕获全局信息,下层路由关注局部细节,降低计算复杂度。本文提供Biformer的代码实现、修改教程和成功运行记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

BiFormer是一种结合了Bi-level Routing Attention的视觉Transformer模型,BiFormer模型的核心思想是引入了双层路由注意力机制。在BiFormer中,每个图像块都与一个位置路由器相关联。这些位置路由器根据特定的规则将图像块分配给上层和下层路由器。上层路由器负责捕捉全局上下文信息,而下层路由器则负责捕捉局部区域的细节。

具体来说,上层路由器通过全局自注意力机制对所有图像块进行交互,并生成全局图像表示。下层路由器则使用局部自注意力机制对每个图像块与其邻近的图像块进行交互,并生成局部图像表示。通过这种双层路由注意力机制,BiFormer能够同时捕捉全局和局部的特征信息,从而提高了模型在视觉任务中的性能。

本文改进是基于ResNet18、ResNet34、ResNet50、ResNet101,文章中均以提供,本专栏的改进内容全网独一份深度改进RT-DETR非那种无效Neck部分改进,同时本文的改进也支持主干上的即插即用,本文内容也支持PP-HGNetV2版本的修改。

专栏目录: RT-DETR改进有效系列目录 | 包含卷积、主干、RepC3、注意力机制、Neck上百种创新机制

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR      

目录

一、本文介绍

二、Biformer的作用机制

2.1 Biformer的优劣势

2.2 Biformer的结构

三、Biformer的核心代码

四、 手把手教你添加Biformer(注意看此处)

4.1 修改Basicclock/Bottleneck的教程

4.1.1 修改一

4.1.2 修改二 

4.2 修改主干上即插即用的教程

4.2.1 修改一(如果修改了4.1教程此步无需修改)

4.2.2 修改二 

4.2.3 修改三 

4.2.4 修改四 

五、Biformer的yaml文件

5.1 替换ResNet的yaml文件1(ResNet18版本)

5.2 替换ResNet的yaml文件1(ResNet50版本)

5.3 即插即用的yaml文件(HGNetV2版本)

六、成功运行记录 

6.1 ResNet18运行成功记录截图

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值