YOLOv8改进 | 注意力机制 | 添加YOLO-Face提出的SEAM注意力机制优化物体遮挡检测(附代码 + 修改教程)

本文介绍了YOLO-Face提出的SEAM(Spatially Enhanced Attention Module)注意力机制,用于改善物体遮挡检测。SEAM通过增强未遮挡区域的响应来补偿遮挡损失,同时配合排斥损失函数减少误检。文章详细阐述了SEAM的原理,包括CSMM模块的设计,以及如何在YOLOv8中添加和训练SEAM的教程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、本文介绍

本文给大家带来的改进机制是由YOLO-Face提出能够改善物体遮挡检测的注意力机制SEAM,SEAM(Spatially Enhanced Attention Module)注意力网络模块旨在补偿被遮挡面部的响应损失,通过增强未遮挡面部的响应来实现这一目标,其希望通过学习遮挡面和未遮挡面之间的关系来改善遮挡情况下的损失从而达到改善物体遮挡检测的效果,本文将通过介绍其主要原理后,提供该机制的代码和修改教程,并附上运行的yaml文件和运行代码,小白也可轻松上手。。

欢迎大家订阅我的专栏一起学习YOLO! 

 专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备 

目录

一、本文介绍

二、原理介绍

2.1 遮挡改进

2.2 SEAM模块

2.3 排斥损失 

三、核心代码

四、添加教程

  4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、SEAM的yaml文件和运行记录

5.1 SEAM的yaml文件

5.2 MultiSEAM的yaml文件

5.3 训练代码 

我作为AI语言模型,无法直接提供代码,但是我可以为你提供SEAM注意力机制的基本原理和实现步骤。 SEAM(Selective Encoding with Attentive Memory)注意力机制是一种用于文本分类、命名实体识别等自然语言处理任务的注意力机制。它结合了两种不同的注意力机制:自注意力和外部注意力。 SEAM注意力机制的实现步骤如下: 1. 首先,输入文本经过一个编码器,将每个单词映射为一个向量。 2. 对于每个单词,计算其自注意力权重。使用多头自注意力机制,将输入的单词向量分为多个头,每个头计算一组注意力权重。最终将多个头的注意力权重拼接在一起,得到单词的自注意力权重。 3. 对于每个单词,计算其外部注意力权重。这里的外部注意力是针对一个外部的记忆库,比如先前的文本或者知识库等。将这个外部记忆库中的向量与当前单词的向量进行点积,得到注意力分数。再将这些分数进行softmax归一化,得到每个单词的外部注意力权重。 4. 将单词的自注意力权重和外部注意力权重结合起来,得到最终的注意力权重。 5. 将每个单词的向量乘以其对应的注意力权重,得到加权后的向量。 6. 对所有加权后的向量进行平均池化或者最大池化,得到整个文本的表示向量。 7. 最后,将文本表示向量输入到一个分类器中,进行分类。 SEAM注意力机制的核心思想是将自注意力和外部注意力结合起来,从而更好地捕捉文本的重要信息。相比于传统的注意力机制SEAM注意力机制可以更好地处理长文本,并且具有更好的可解释性。
评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值