爆改YOLOv8 |YOLOv8融合SEAM注意力机制

1,本文介绍

SEAM(Spatially Enhanced Attention Module)是一种专门设计用来改善遮挡情况下的识别性能的注意力机制。面对遮挡问题时,特征的响应可能会受到显著影响,从而影响识别准确性。SEAM 模块的核心目标是通过增强未遮挡区域的特征响应,来弥补遮挡区域的响应损失。它通过学习遮挡和未遮挡之间的关系,动态调整特征图中的关注点,使模型能够更有效地处理被遮挡的信息。具体来说,SEAM 结合空间注意力和特征增强机制,通过关注未遮挡区域的重要性,并改善整体特征表示,提升物体遮挡情况下的检测效果。这种方法不仅改善了遮挡情况下的识别精度,还提高了对复杂场景中特征的理解能力。

本文将讲解如何将SEAM融合进yolov8

话不多说,上代码!

2, 将SEAM融合进yolov8

2.1 步骤一

找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个seam.py文件,文件名字可以根据你自己的习惯起,然后将seam的核心代码复制进去

import torch
import torch.nn as nn
 
__all__ = ['SEAM', 'MultiSEAM']
 
class Residual(nn.Module):
    def __init__(self, fn):
        super(Residual, self).__init__()
        self.fn = fn
 
    def forward(self, x):
        return self.fn(x) + x
 
class SEAM(nn.Module):
    def __init__(self, c1,  n=1, reduction=16):
        super(SEAM, self).__init__()
        c2 = c1
        self.DCovN = nn.Sequential(
            # nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1, groups=c1),
            # nn.GELU(),
            # nn.BatchNorm2d(c2),
            *[nn.Sequential(
                Residual(nn.Sequential(
                    nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=3, stride=1, padding=1, groups=c2),
                    nn.GELU(),
                    nn.BatchNorm2d(c2)
                )),
                nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=1, stride=1, padding=0, groups=1),
                nn.GELU(),
                nn.BatchNorm2d(c2)
            ) for i in range(n)]
        )
        self.avg_pool = torch.nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(c2, c2 // reduction, bias=False),
            nn.ReLU(i
### YOLOv5与SEAM技术集成 #### 集成背景 YOLOv5作为一种高效的实时目标检测算法,在多个领域得到了广泛应用。然而,面对复杂场景中的遮挡问题,其表现可能受到一定影响。为了提升YOLOv5对于被部分遮挡物体的识别能力,可以引入由YOLO-Face提出的SEAM(Spatial Excitation and Attention Module)注意力机制[^2]。 #### SEAM模块介绍 SEAM通过空间激励和注意机制来增强特征图中重要区域的信息表达。具体来说,该模块能够自动学习到哪些位置更值得关注,并给予这些区域更高的权重,从而善模型对局部细节的理解能力和鲁棒性。这种特性使得SEAM非常适合用于解决因遮挡而导致的目标难以辨认的问题。 #### 实现步骤概述 要在YOLOv5框架内加入SEAM模块,主要涉及以下几个方面的工作: - **修网络架构**:在原有基础上增加一层或多层SEAM组件; - **调整配置文件**:更新`.yaml`配置文档以适应新的结构变化; - **编写自定义层代码**:实现具体的前向传播逻辑; - **重新训练模型**:利用新构建的数据集进行迭代优化直至收敛; #### Python代码示例 下面给出一段简单的Python伪代码片段展示如何创建并应用SEAM类实例化对象至YOLOv5主干网路之中: ```python import torch.nn as nn class SEAM(nn.Module): def __init__(self, channel, reduction=16): super(SEAM, self).__init__() # 定义必要的子模块... def forward(self, x): b, c, _, _ = x.size() y = ... # 计算全局平均池化后的值 z = ... # 经过全连接层变换得到最终输出 return x * z.expand_as(x) def add_seam_to_backbone(model): """遍历model的所有children()成员, 如果满足条件则替换为带有SEAM的新版本""" for name, module in model.named_children(): if isinstance(module, SomeCondition): setattr(model, name, NewModuleWithSEAM()) else: add_seam_to_backbone(module) ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值