爆改YOLOv8 |YOLOv8融合SEAM注意力机制

1,本文介绍

SEAM(Spatially Enhanced Attention Module)是一种专门设计用来改善遮挡情况下的识别性能的注意力机制。面对遮挡问题时,特征的响应可能会受到显著影响,从而影响识别准确性。SEAM 模块的核心目标是通过增强未遮挡区域的特征响应,来弥补遮挡区域的响应损失。它通过学习遮挡和未遮挡之间的关系,动态调整特征图中的关注点,使模型能够更有效地处理被遮挡的信息。具体来说,SEAM 结合空间注意力和特征增强机制,通过关注未遮挡区域的重要性,并改善整体特征表示,提升物体遮挡情况下的检测效果。这种方法不仅改善了遮挡情况下的识别精度,还提高了对复杂场景中特征的理解能力。

本文将讲解如何将SEAM融合进yolov8

话不多说,上代码!

2, 将SEAM融合进yolov8

2.1 步骤一

找到如下的目录'ultralytics/nn/modules',然后在这个目录下创建一个seam.py文件,文件名字可以根据你自己的习惯起,然后将seam的核心代码复制进去

import torch
import torch.nn as nn
 
__all__ = ['SEAM', 'MultiSEAM']
 
class Residual(nn.Module):
    def __init__(self, fn):
        super(Residual, self).__init__()
        self.fn = fn
 
    def forward(self, x):
        return self.fn(x) + x
 
class SEAM(nn.Module):
    def __init__(self, c1,  n=1, reduction=16):
        super(SEAM, self).__init__()
        c2 = c1
        self.DCovN = nn.Sequential(
            # nn.Conv2d(c1, c2, kernel_size=3, stride=1, padding=1, groups=c1),
            # nn.GELU(),
            # nn.BatchNorm2d(c2),
            *[nn.Sequential(
                Residual(nn.Sequential(
                    nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=3, stride=1, padding=1, groups=c2),
                    nn.GELU(),
                    nn.BatchNorm2d(c2)
                )),
                nn.Conv2d(in_channels=c2, out_channels=c2, kernel_size=1, stride=1, padding=0, groups=1),
                nn.GELU(),
                nn.BatchNorm2d(c2)
            ) for i in range(n)]
        )
        self.avg_pool = torch.nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(c2, c2 // reduction, bias=False),
            nn.ReLU(i
### YOLOv8注意力机制融合实现 #### MLLA 注意力机制融合YOLOv8中引入MLLA(Mamba Linear Long-term Attention)模块,旨在结合Mamba的设计特点与线性注意力Transformer的优势。这种组合使得模型能够在保持高效的同时,进一步提升对于长期依赖性的捕捉能力[^1]。 为了实现在YOLOv8架构内嵌入MLLA: 1. **状态空间建模**:利用Mamba特有的遗忘门结构,在网络层间传递信息时加入记忆功能,允许模型更好地记住重要上下文特征。 2. **位置关联性计算**:采用线性变换的方式重新定义自注意力机制中的查询、键和值向量间的交互方式,减少计算复杂度并加速训练过程。 3. **多尺度特征提取**:通过调整不同层次的感受野大小,确保各个阶段都能获取到足够的局部细节以及全局视野,从而优化最终输出的质量。 ```python class MLALayer(nn.Module): def __init__(self, channels): super(MLALayer, self).__init__() # 定义MLLA组件... def forward(self, x): # 实现前向传播逻辑... pass ``` #### SEAM 注意力机制融合 针对物体检测任务中存在的遮挡现象,YOLOv8集成了SEAM(Spatially Enhanced Attention Module),该模块专注于强化那些未被遮蔽部分的空间特性表达,以此补偿因遮盖而丢失的信息[^2]。 具体实施策略如下: - **空间注意力建模**:通过对输入图像的不同区域赋予不同程度的关注权重,突出显示哪些地方最值得关注;这有助于引导后续卷积操作更加聚焦于有效信号源之上。 - **特征增强处理**:基于所学得的空间分布模式,针对性地放大某些特定通道上的激活强度,进而达到加强有用表征的目的。 - **动态适应调节**:随着样本变化自动微调内部参数配置,保证无论遇到何种类型的障碍物干扰都能够灵活应对。 ```python class SEAMLAYER(nn.Module): def __init__(self, channel): super(SEAMLAYER, self).__init__() # 初始化SEAM所需变量... def spatial_attention(self, feat_map): # 计算空间注意力得分... return attention_scores def feature_enhancement(self, feats, weights): # 应用加权平均以增强特征... enhanced_features = ... return enhanced_features def forward(self, input_tensor): spa_atten = self.spatial_attention(input_tensor) output = self.feature_enhancement(input_tensor, spa_atten) return output ``` 这两种不同的注意力机制都极大地增强了YOLOv8对各种视觉挑战场景下目标定位的能力,无论是长时间序列数据还是存在严重遮挡的情况下均表现出色。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值