YOLOv9改进策略 | 添加注意力篇 | 利用YOLOv10提出的PSA注意力机制助力YOLOv9有效涨点(附代码 + 详细修改教程)

本文介绍了如何在YOLOv9中应用YOLOv10提出的PSA注意力机制,以提升模型性能,降低计算复杂度。详细讲述了PSA的原理、核心代码,并手把手教读者进行代码修改,包括新建模块文件、导入和注册模块等步骤。还提供了PSA的yaml配置文件和训练过程截图,鼓励读者尝试更多改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  一、本文介绍

本文给大家带来的改进机制是YOLOv10提出的PSA注意力机制,自注意力在各种视觉任务中得到了广泛应用,因为它具有显著的全局建模能力。然而,自注意力机制表现出较高的计算复杂度和内存占用。为了解决这个问题,鉴于注意力头冗余的普遍存在,我们提出了一种高效的部分自注意力(PSA)模块设计,其能够在不显著增加计算成本的情况下提升YOLO模型的性能!本文附其网络结构图辅助大家理解该结构,同时本文包含YOLOv9添加该注意力机制的方法!

欢迎大家订阅我的专栏一起学习YOLO!

 专栏地址:YOLOv9有效涨点专栏-持续复现各种顶会内容-有效涨点-全网改进最全的专栏 


目录

  一、本文介绍

二、PSA介绍

三、PSA核心代码 

四、手把手教你添加PSA注意力机制

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、PSA的yaml文件和运行记录

5.1 PSA的yaml文件

5.2 训练过程截图 

### YOLOv10PSA注意力机制的实现原理 #### PSA注意力机制概述 PSA(Parallel Spatial Attention)是一种并行空间注意力机制,旨在通过增强模型的空间感知能力来提升目标检测性能。它通过对特征图的不同通道进行加权处理,突出重要区域的信息,从而提高模型对复杂场景的理解能力[^1]。 #### PSA注意力机制的工作流程 PSA的核心思想是将输入特征图分解为空间维度上的多个子区域,并计算这些子区域之间的相互关系。具体来说,PSA分为两个主要部分:水平方向的注意力建模和垂直方向的注意力建模。这两个过程分别捕捉不同方向上像素间的依赖关系,最终通过融合得到完整的注意力权重矩阵[^2]。 #### YOLOv10中的PSA集成方法 在YOLOv10中,PSA被嵌入到网络的关键层之间,通常是在骨干网络提取特征之后以及预测头之前的位置。这种设计使得PSA能够有效地调整中间特征表示的质量,进而改善后续的目标定位和分类精度[^3]。 以下是基于PyTorch框架的一个简化版PSA模块实现: ```python import torch import torch.nn as nn class PSA(nn.Module): def __init__(self, channel=512, reduction=4): super(PSA, self).__init__() self.avg_pool = nn.AdaptiveAvgPool2d(1) self.fc = nn.Sequential( nn.Linear(channel, channel // reduction, bias=False), nn.ReLU(inplace=True), nn.Linear(channel // reduction, channel, bias=False), nn.Sigmoid() ) def forward(self, x): b, c, _, _ = x.size() y = self.avg_pool(x).view(b, c) y = self.fc(y).view(b, c, 1, 1) return x * y.expand_as(x) # 使用示例 psa_module = PSA(channel=512, reduction=4) input_tensor = torch.randn((1, 512, 7, 7)) output_tensor = psa_module(input_tensor) print(output_tensor.shape) # 输出形状应为 (1, 512, 7, 7) ``` 上述代码定义了一个基础版本的PSA模块,其中`channel`参数指定了输入张量的通道数,而`reduction`则控制注意力压缩的比例。该模块通过全局平均池化操作获取每通道的统计特性,并利用全连接层构建注意力权重。 #### 结合YOLOv10的整体架构 为了使PSA更好地融入YOLOv10体系结构,在实际应用过程中需考虑以下几个方面: - **位置选择**:建议将PSA放置于FPN(Feature Pyramid Network)或PANet(Path Aggregation Network)的每一级输出处。 - **多尺度支持**:由于YOLO系列算法天然具备多尺度推理功能,因此还需确保PSA能够在不同分辨率下保持一致性表现。 - **训练策略优化**:引入额外正则项或者微调学习率可能有助于缓解因新增组件带来的过拟合风险。 --- ###
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值