### 集成CBAM注意力机制至YOLOv5
为了在YOLOv5中集成CBAM(Convolutional Block Attention Module),可以遵循类似的思路来修改YOLOv5的架构。这涉及到在网络的关键部分加入CBAM模块,从而增强特征表示能力。
#### 修改YOLOv5网络结构
首先,在YOLOv5项目中找到`models/yolov5s.py`或其他相应版本文件的位置。接着按照如下方式调整模型定义:
```python
import torch.nn as nn
from cbam import CBAM # 假设已经实现了CBAM类
class YOLOv5(nn.Module):
def __init__(self, num_classes):
super(YOLOv5, self).__init__()
self.num_classes = num_classes
# 定义原有的YOLOv5骨干网和其他组件...
# 插入CBAM模块于特定位置之前
self.cbam_1 = CBAM(channels=256) # 根据实际通道数设置
self.cbam_2 = CBAM(channels=512) # 同上
def forward(self, x):
# 执行原有层的操作...
# 在适当的地方应用CBAM处理
x = self.some_layer_before_cbam(x)
x = self.cbam_1(x)
# 继续后续操作...
x = self.another_layer_after_cbam(x)
x = self.cbam_2(x)
# 输出预测结果
return x
```
上述代码片段展示了如何通过继承自`nn.Module`创建一个新的YOLOv5子类,并在其内部适当地插入了两个CBAM实例[^2]。需要注意的是,具体的层数和参数配置应当依据原始YOLOv5的设计而定;此处仅提供了一个概念性的框架用于说明目的。
#### 实现CBAM模块
如果还没有实现CBAM,则可以根据论文描述自行编写该模块。下面给出了一种可能的简化版实现方法:
```python
import torch
import torch.nn.functional as F
from torch import nn
class BasicConv(nn.Module):
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True,
bn=True, bias=False):
super(BasicConv, self).__init__()
self.out_channels = out_planes
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
dilation=dilation, groups=groups, bias=bias)
self.bn = nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) if bn else None
self.relu = nn.ReLU() if relu else None
def forward(self, x):
x = self.conv(x)
if self.bn is not None:
x = self.bn(x)
if self.relu is not None:
x = self.relu(x)
return x
class ChannelGate(nn.Module):
def __init__(self, gate_channels, reduction_ratio=16, pool_types=['avg', 'max']):
super(ChannelGate, self).__init__()
self.gate_channels = gate_channels
self.mlp = nn.Sequential(
Flatten(),
nn.Linear(gate_channels, gate_channels // reduction_ratio),
nn.ReLU(),
nn.Linear(gate_channels // reduction_ratio, gate_channels)
)
self.pool_types = pool_types
def forward(self, x):
channel_att_sum = None
for pool_type in self.pool_types:
if pool_type == 'avg':
avg_pool = F.avg_pool2d(x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_raw = self.mlp(avg_pool)
elif pool_type == 'max':
max_pool = F.max_pool2d(x, (x.size(2), x.size(3)), stride=(x.size(2), x.size(3)))
channel_att_raw = self.mlp(max_pool)
if channel_att_sum is None:
channel_att_sum = channel_att_raw
else:
channel_att_sum += channel_att_raw
scale = torch.sigmoid(channel_att_sum).unsqueeze(2).unsqueeze(3).expand_as(x)
return x * scale
def logsumexp_2d(tensor):
tensor_flatten = tensor.view(tensor.size(0), tensor.size(1), -1)
s, _ = torch.max(tensor_flatten, dim=2, keepdim=True)
outputs = s + (tensor_flatten - s).exp().sum(dim=2, keepdim=True).log()
return outputs
class SpatialGate(nn.Module):
def __init__(self):
super(SpatialGate, self).__init__()
kernel_size = 7
self.compress = ChannelPool()
self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False)
def forward(self, x):
x_compress = self.compress(x)
x_out = self.spatial(x_compress)
scale = torch.sigmoid(x_out) # broadcasting
return x * scale
class CBAM(nn.Module):
def __init__(self, gate_channels, reduction_ratio=16, pool_types=None, no_spatial=False):
super(CBAM, self).__init__()
self.ChannelGate = ChannelGate(gate_channels, reduction_ratio, pool_types)
self.no_spatial = no_spatial
if not no_spatial:
self.SpatialGate = SpatialGate()
def forward(self, x):
x_out = self.ChannelGate(x)
if not self.no_spatial:
x_out = self.SpatialGate(x_out)
return x_out
```
这段代码提供了完整的CBAM构建逻辑,包括通道注意门控器(`ChannelGate`)以及空间注意门控器(`SpatialGate`)两大部分[^1]。