YOLOv11改进 | Conv/卷积篇 | 2024最新ECCV最新大感受野的小波卷积WTConv助力YOLOv11有效涨点

一、本文介绍

本文给大家带来的改进机制是一种新的卷积层,称为WTConv(小波卷积层),它利用小波变换(WT)来解决卷积神经网络(CNN)在实现大感受野时遇到的过度参数化问题。WTConv的主要目的是通过对输入数据的不同频率带进行处理,使CNN能够更有效地捕捉局部和全局特征,WTConv成功解决了CNN在感受野扩展中的参数膨胀问题,提供了一种更为高效、鲁棒且易于集成的卷积层解决方案,我将其用于二次创新YOLOv11中的C3k2机制可以减少一定参数量和计算量,达到一个可观的轻量化作用(这种小波Conv对于目前的创新角度来说是非常流行的)

专栏回顾:YOLOv11有效涨点专栏——本专栏持续复习各种顶会内容——科研必备 


目录

一、本文介绍

二、原理介绍 

三、核心代码 

四、手把手教你添加C3k2

 4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、正式训练

5.1 yaml文件

 5.2 训练代码 

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值