YOLOv11改进 | Conv篇 | 利用YOLO-MS的MSBlock轻量化网络结构(含二次创新C3k2)

一、本文介绍

本文给大家带来的改进机制是利用YOLO-MS提出的一种针对于实时目标检测的MSBlock模块(其其实不能算是Conv但是其应该是一整个模块),我们将其用于C3k2中组合出一种新的结构,来替换我们网络中的模块可以达到一种轻量化的作用,我将其用于我的数据集上实验,包括多个类别的数据集,其在轻量网络结构的同时,却能够提高一定的mAP精度,所以这是一种十分高效的模块,该网络结构非常适合那些模型精度已经无法提到,想要从轻量化模型的角度入手的读者使用,欢迎大家订阅本专栏,本专栏每周更新3-5篇最新机制,更有包含我所有改进的文件和交流群提供给大家。

欢迎大家订阅我的专栏一起学习YOLO!

 专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

一、本文介绍

二、MSBlock

2.1  MSBlock的基本原理

2.2 多尺度特征表示

2.3 层次化特征融合

2.4 异构卷积核选择

三、MSBlock的核心代码

四、MSBlock的添加方式 

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、MSBlock的yaml文件和运行记录

5.1 MSBlock的yaml文件一

5.2 MSBlock的yaml文件二

### YOLOv8中MSBlock的使用说明和实现细节 #### 介绍 将MSBlock引入YOLOv8,可以有效提升YOLOv8的轻量化效果,同时保持较高的检测精度[^1]。通过部分标准卷积替换为MSBlock,在特征提取层中加入多尺度卷积核操作,使得网络能够适应不同大小的目标。 #### MSBlock架构详解 MSBlock设计用于增强模型处理多种尺度目标的能力。其核心在于采用多个不同尺寸的卷积核来捕捉图像的不同层次特征。这种结构不仅提高了模型对于复杂场景的理解能力,还能够在一定程度上减少参数量并加速推理过程[^2]。 #### 融合方法 在YOLOv8框架内集成MSBlock主要体现在两个方面: - **位置选择**:通常会选取一些关键性的中间层作为插入点,这些层往往位于骨干网较深的位置,负责更高级别的语义信息抽取。 - **替代策略**:用定制化的MSBlock模块逐步取代原有的单一尺度卷积单元,形成一个多分支并行计算路径,从而构建起更加鲁棒有效的特征金字塔表示形式。 #### Python代码实例 下面给出一段简单的Python伪代码片段展示如何定义一个基本版的MSBlock类以及它可能的应用方式于YOLOv8之中: ```python import torch.nn as nn class MSBlock(nn.Module): def __init__(self, in_channels, out_channels): super(MSBlock, self).__init__() # 定义三个不同大小的卷积核 self.conv_small = nn.Conv2d(in_channels, out_channels//3, kernel_size=1) self.conv_medium = nn.Conv2d(in_channels, out_channels//3, kernel_size=3, padding=1) self.conv_large = nn.Conv2d(in_channels, out_channels//3, kernel_size=5, padding=2) def forward(self, x): small_out = self.conv_small(x) medium_out = self.conv_medium(x) large_out = self.conv_large(x) # 将三种尺度的结果拼接在一起返回 return torch.cat([small_out, medium_out, large_out], dim=1) # 假设这是YOLOv8的一个简化版本 class SimplifiedYOLOv8(nn.Module): ... def _make_layer_with_msblock(self, block, planes, blocks, stride=1): layers = [] for i in range(blocks): if isinstance(block, MSBlock): # 如果是指定类型的MSBlock,则创建该类型对象 b = block(planes * (i==0), planes) else: raise ValueError('Unsupported Block Type') layers.append(b) return nn.Sequential(*layers) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值