YOLOv11改进 | 网络结构代码逐行解析(二) | yolov11中的Mosaic增强详解

 一、本文介绍

本文给大家带来的是YOLOv11中的Mosaic增强代码的详解可能有部分人对于这一部分比较陌生,有的读者可能知道Mosaic增强但是不知道其工作原理,具体来说Mosaic增强就是指我们的数据集中的图片在输入给模型之前的一个处理过程(我们的图片并不是直接就输入给模型了,大家的训练结果中的结果检测图片大家可以看到数据集中多个图片会组合在一起这就是简单的Mosaic增强),下面我就来讲解一下其在YOLOv11中工作原理和代码定义,下面图片为一个Mosaic增强后的图片。 

  专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备


目录

 一、本文介绍

二、代码详解

2.1 BaseMixTransform

2.2 Mosaic

三、图片示例 

四、 Mosaic

### 关于YOLOv11中的马赛克数据增强 目前提及的信息中并未涉及有关YOLOv11的具体细节[^1]。然而,在YOLO系列的发展历程里,确实引入了诸如马赛克(Mosaic)这样的数据增强技术来提升模型性能。对于YOLOv5而言,其采用了PyTorch框架并积极融入各种优化措施以改善检测效果和效率[^3]。 尽管没有直接针对YOLOv11的说明,基于现有YOLO版本的做法,下面提供一段Python代码作为如何在YOLO架构下实现马赛克数据增强的一个通用示例: ```python import random from PIL import Image, ImageDraw def load_image(path): img = Image.open(path).convert('RGB') return img def mosaic_augmentation(image_paths, labels, input_size=(640, 640)): """ Apply Mosaic Data Augmentation on images. Parameters: image_paths (list): List of paths to the four images used for creating one augmented image. labels (list): Corresponding bounding box coordinates and class IDs associated with each image path. input_size (tuple): Desired size after applying augmentation. Returns: tuple: A tuple containing an augmented image as a numpy array and updated label information. """ # Load all images into memory first imgs = [load_image(p) for p in image_paths] # Randomly place these four images within a larger canvas that is twice the width/height w, h = input_size mosaic_img = Image.new('RGB', (w * 2, h * 2)) xc, yc = [int(random.uniform(w * 0.4, w * 0.6)) for _ in range(2)] # center x, y indices = list(range(len(imgs))) random.shuffle(indices) for i, idx in enumerate(indices[:4]): img_i = imgs[idx].resize((w, h)) if i == 0: # top left x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image) x1b, y1b, x2b, y2b = w - (xc - x1a), h - (yc - y1a), w, h # xmin, ymin, xmax, ymax (small image) elif i == 1: # top right x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, w * 2), yc x1b, y1b, x2b, y2b = 0, h - (yc - y1a), min(w, x2a - xc), h elif i == 2: # bottom left x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(h * 2, yc + h) x1b, y1b, x2b, y2b = w - (xc - x1a), 0, max(xc, x2a - w), min(y2a - yc, h) elif i == 3: # bottom right x1a, y1a, x2a, y2a = xc, yc, min(xc + w, w * 2), min(h * 2, yc + h) x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - xc), min(y2a - yc, h) mosaic_img.paste(img_i.crop((x1b, y1b, x2b, y2b)), (x1a, y1a, x2a, y2a)) padw = x1a - x1b padh = y1a - y1b # Adjust bounding boxes accordingly... pass cropped_mosaic_img = mosaic_img.crop((max(0, xc-w//2), max(0, yc-h//2), min(mosaic_img.width, xc+w//2), min(mosaic_img.height, yc+h//2))) return cropped_mosaic_img.resize(input_size) # Example usage image_files = ['path/to/image{}.jpg'.format(i) for i in range(1, 5)] labels_for_images = [[], [], [], []] # Placeholder; should contain actual bbox info per image augmented_image = mosaic_augmentation(image_files, labels_for_images) ``` 这段代码展示了如何通过组合四张图片创建一个新的训练样本,并调整相应的边界框位置。需要注意的是,实际应用时还需要处理标签信息的变化,即根据裁剪后的图像更新物体的位置坐标。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值