【RT-DETR有效改进】 添加注意力篇 | 2024最新的空间和通道协同注意力模块SCSA改进RT-DETR有效涨点

一、本文介绍

本文给大家带来的改进机制是2024最新的空间和通道协同注意力模块(Spatial and Channel Synergistic Attention)SCSA,其通过结合空间注意力(Spatial Attention)和通道注意力(Channel Attention),提出了一种新的协同注意力模块SCSA。SCSA的设计由两个主要部分组成:共享多语义空间注意力(SMSA)和渐进通道自注意力(PCSA)| 个人感觉类似于CBAM,SCSA机制旨在有效地结合通道和空间注意力的优势,充分利用多语义信息,从而提高视觉任务的表现(本文基于ResNet18、ResNet50、HGNetv2-l、HGNetv2-x进行改进.同样适用ResNet全版本)。

欢迎大家订阅我的专栏一起学习RT-DETR!      

专栏链接:RT-DETR剑指论文专栏,持续复现各种顶会内容——论文收割机RT-DETR


目录

一、本文介绍

二、基本原理 

三、核心代码 

四、添加教程

  4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

五、正式训练

5.1 yaml文件1

5.2 yaml文件2

5.3 yaml文件3

5.4 yaml文件4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值