YOLOv11改进 | 细节涨点篇 | 2024最新高效上采样模块EUCB助力yolov11有效涨点(全网独家创新)

一、本文介绍

本文给大家带来的最新改进机制是2024最新高效上采样模块EUCB,EUCB 用于逐步上采样特征图,使其尺寸和分辨率与后续跳跃连接相匹配。这种对齐增强了不同层级和阶段间的信息融合(这个模块对于分割网络效果更佳), EUCB 首先进行上采样操作,将输入特征图的尺度放大 2 倍,然后应用 DWC,接着进行批归一化(BN)和 ReLU 激活,这些步骤能够在不增加显著计算开销的情况下高效地增强特征图。最后进行 1x1 卷积以减少通道数,使上采样后的特征图与下一阶段的通道数相匹配,这对于解码路径中的平滑集成至关重要,本文内容为独家整理,同时该结构可以和其他Neck结构进行融合形成二次创新。 

欢迎大家订阅我的专栏一起学习YOLO!  

 专栏回顾:YOLOv11改进系列专栏——本专栏持续复习各种顶会内容——科研必备 


目录

一、本文介绍

二、原理介绍 

三、核心代码 

四、手把手教你添加EUCB

4.1 修改一

4.2 修改二 

4.3 修改三 

4.4 修改四 

### 深度学习中的上采样与下采样 #### 下采样方法及其应用场景 在深度学习中,下采样层用于减少输入数据的空间维度,从而降低计算复杂性和参数数量。这一过程有助于提升模型的效率和泛化性能[^1]。 常见的下采样技术有: - **最大池化(Max Pooling)**:选取局部区域内的最大值作为该区域的代表值。这种方法能够保留最显著特征的同时去除冗余信息。 - **平均池化(Average Pooling)**:取局部区域内所有像素值的均值来进行降维操作。相比最大池化而言,这种方式可以平滑掉一些极端值的影响。 - **自适应池化(Adaptive Pooling)**:允许指定输出尺寸大小而不必关心具体的窗口形状或步幅设置。对于不同尺度下的目标检测等问题尤为适用。 这些下采样手段广泛应用于计算机视觉领域内诸如分类、定位以及分割等多个方面,在保持重要结构特性的前提下去除了不必要的细节干扰项,进而提高了处理速度并增强了鲁棒性表现。 ```python import torch.nn as nn class Downsample(nn.Module): def __init__(self, method='max'): super().__init__() if method == 'max': self.downsample_layer = nn.MaxPool2d(kernel_size=2, stride=2) elif method == 'avg': self.downsample_layer = nn.AvgPool2d(kernel_size=2, stride=2) def forward(self, x): return self.downsample_layer(x) ``` #### 上采样方法及其应用场景 相对应于上述缩小图像尺寸的操作,当需要恢复原始分辨率或者放大图片时,则会采用到所谓的“上采样”。这类算法旨在重建更精细级别的表示形式以便后续分析利用。 具体实现方式包括但不限于: - **最近邻插值(Nearest Neighbor Interpolation)**:简单复制临近位置处的数据完成扩展填充工作;虽然容易造成锯齿效应但运算成本低廉快速。 - **双线性插值(Bilinear Interpolation)**:综合考虑四个相邻节之间的加权组合关系得出新的估计数值;相较于前者能获得更加光滑自然的结果过渡效果。 - **转置卷积(Transposed Convolution / Deconvolution)**:通过反向传播机制逆向映射低级表达至高级空间分布模式之中;特别适合用来设计生成对抗网络(GANs)等创造性任务框架里边去。 此外还有专门针对特定需求定制开发出来的高效解决方案比如EUCB(Efficient Upsampling Convolution Block),其被证明可以在不牺牲太多资源消耗的情况下达到理想的重构质量水平[^3]。 ```python from torchvision import models upsample_model = models.segmentation.fcn_resnet50(pretrained=True).aux_classifier[-1] def upsample(input_tensor, size=None, scale_factor=None, mode='bilinear', align_corners=False): return nn.functional.interpolate( input_tensor, size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners ) ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Snu77

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值