降维与压缩——奇异值分解(SVD)

一、特征值分解(EVD)的局限性

在进行主成分分析(PCA)的时候我们用到了特征值分解(EVD)的方法,这个方法很重要和很高效,但是同时也存在局限性。

那就是特征值分解要求矩阵必须是 方阵 并且一定能够被 对角化

那么扩展到一般情况,对于任意形状的矩阵的情况怎么办呢?比如说图片、数据表格等等。

那么奇异值分解(SVD)就进入了我们的视野,它可以对任意形状的矩阵进行分解,适用范围更广。

二、特征值分解的几何意义

我们一开始是获得一组原始的M X N 的数据采样矩阵A,其中M代表特征的个数,N代表样本个数。

\large A矩阵通过与自身的转置矩阵\large A^T相乘,\large AA^T得到M阶的样本特征的协方差矩阵\large C

然后获取协方差矩阵\large C的一组标准正交特征向量\large (q_1,q_2,q_3,...,q_m)以及对应的特征值\large (\lambda_1, \lambda_2, \lambda_3,..., \lambda_m )

此时,我们对协方差矩阵\large C进行特征值分解,将矩阵分解为这样的形式:

\large C = [q_1,q_2,q_3,...q_m]\begin{bmatrix} \lambda _1 & & & &\\ & \lambda _2 & & &\\ & & \lambda _3 & &\\ & & & ... &\\ & & & & \lambda _m \end{bmatrix} \begin{bmatrix} q_1^T\\ q_2^T\\ q_3^T\\ ...\\ q_m^T\\ \end{bmatrix}

最终通过获取前面k个特征值对应的特征向量,依次构成数据压缩矩阵\large P的各行,通过矩阵相乘\large PA进行投影达到数据压缩的目的。

我们可以看到,想要完成特征值分解,最终还是要回到\large Cq_i = \lambda _iq_i这个式子上来。

三、入手奇异值分解——Av = σμ

如果不进协方差矩阵\large C的获取,直接对原始的数据采样矩阵\large A进行矩阵分解,进行降维操作,显然是不行的。

特征值分解有两个大前提,一是必须是方阵,二是必须能够满足对角化。

但是对于原始的m x n 矩阵\large A可能连基本方阵的要求都达不到,根本无法进行特征值分解。

对于一个任意形状的m x n形状矩阵,我们有以下普遍意义的性质:

① 假设m>n,就有r≤n<m的不等关系

②在\large R^n空间中一定有一组正交向量\large v_1,v_2,v_3,...v_n,在\large R^m空间中一定有一组正交向量\large v_1,v_2,v_3,...v_m

使之满足\large A\upsilon _i = \sigma_i\mu_i

在此基础上可以将

\large A[v_1.v_2.v_3,...v_n] = [\sigma_1\mu_1,\sigma_2\mu_2.\sigma_3\mu_3,...,\sigma_n\mu_n]

进一步转换为以下形式:

 

 \large A[v_1.v_2.v_3,...v_n] = [\mu_1.\mu_2,\mu_3,...\mu_n]\begin{bmatrix} \sigma_1 & & & & \\ & \sigma_2 & & & \\ & & \sigma_3 & & \\ & & & ... & \\ & & & & \sigma_n \end{bmatrix}

在这个分解的式子下,我们发现基向量\LARGE u_{_{^{n+1}}},u_{_{^{n+2}}},u_{_{^{n+3}}},...,u_{_{^{m}}}没有包含在内。

将其添加到矩阵右侧,得到完整的m阶方阵

  • 8
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值