scRNA-seq 数据处理流程

这篇博客详细记录了对单细胞RNA测序数据的分析流程,从构建Seurat对象开始,涵盖质量控制、数据标准化、特征选择、尺度转换、主成分分析、聚类、非线性降维、差异表达分析、细胞注释及细胞间相互作用等多个关键步骤。通过这个学习路径,可以深入了解单细胞转录组学的数据处理方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

brief

最近的一篇综述讲述了单细胞数据的分析方向,包括对应的工具,准备跟着文章走一次,如下是学习记录。
Title : Complex Analysis of Single-Cell RNA Sequencing Data
DOI : 10.1134/S0006297923020074
在这里插入图片描述

目前的学习路径如下:
(每个步骤细节还蛮多的,放在一起就太臃肿且不好组织了,分开学习分开记录,有需要的点击超链接。)
1.构建Seurat 对象
2.Pro-process:QC & 过滤细胞
3.Normalizing the data
4.Feature select
5.scale data
6.RunPCA
7.cluster
8.非线性降维+可视化
9.Cluster biomarkers:differential expression
10.Cell annotation
11.Cell-cell intraction

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值