深入解读相机矩阵

本文详细介绍了相机成像的基础——针孔模型,进而探讨了相机矩阵、内参矩阵和外参矩阵的概念。针孔模型描述了小孔成像的原理,而相机矩阵作为三维到二维的投影关系,可以进一步分解为内参矩阵和外参矩阵。内参矩阵反映了相机自身属性,如焦距和像素尺寸,外参矩阵则描述了世界坐标系与相机坐标系的变换关系。
摘要由CSDN通过智能技术生成

在这片文章里,你将了解到以下内容:
1、相机的针孔模型
2、相机矩阵的概念
3、相机内参的含义
4、相机外参的含义

1 相机针孔模型

针孔模型是相机成像的基础模型,是理解后续相机矩阵内容的基础。
下图描述了基本的小孔成像过程:

在这里插入图片描述
图中,X坐标系是针孔所在坐标系,Y坐标系为成像平面坐标系,P为空间一点,小孔成像使得P点在图像平面上呈现了一个倒立的像。
在这里插入图片描述
这幅图是前一幅图的俯视图,由三角相似关系可以得到:
在这里插入图片描述在这里插入图片描述
写成矩阵的形式:
在这里插入图片描述
多了一个讨厌的负号(小孔成像上下颠倒,左右也颠倒),为了方便,大家把成像平面移到了和物体(P点)相同的一边,这样相似关系中就没有负号。
在这里插入图片描述
上图中Y1’为移动后的成像平面,这与移动前的比例关系是等效的。
在这里插入图片描述 在这里插入图片描述
写成矩阵形式:
在这里插入图片描述
参考资料4中有一幅图能够更好的反映小孔成像的原理(下图):
在这里插入图片描述
图中,
相机原点就是成像小孔;
图像平面移到了物体这一边;
图像平面距离小孔的距离为f,小孔本不存在焦距,但是实际中相机都用镜片(透镜模型和小孔模型可以认为是近似的),因此,图像平面在焦距处是清晰成像的条件。
光轴是垂直通过图像平面和相机原点的轴线,它与图像平面的交点被称为主点。
看懂了这幅图,小孔成像也就可以翻篇了。

2、什么是相机矩阵(camera matrix )

首先来理解一下相机成像的本质:成像过程就是三维空间坐标到二维图像坐标的变换,这是一个投影过程(降维打击)。
相机矩阵就是建立这种三维到二维的投影关系。
在这里插入图片描述

评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值