因果系列文章(9)——反事实(下)

本文深入探讨了反事实推理在因果分析中的应用,通过就业培训计划、胰岛素补充和个人医疗决策等案例,阐述了如何计算和理解参与者处理效应(ETT)、必要性和充分性概率。同时,强调了反事实推理在个人决策和强化学习中的重要性,并推荐了相关学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

4月4日,新冠病毒全球累计确诊已经突破100万,其中美国已超过24万。4月2日,外交部新闻发言人华春莹在新闻发布会上质问美国:“如果当初最先发生疫情的国家是美国,而不是中国,美国会处理的比中国更好吗?”我们难以假设那种情况的存在,但是从美国现在的处理行动来看,答案很大可能是不好的。——现实中的“反事实”

这一节还是继续学习反事实推理。有关反事实有一个重要的定理描述如下:

【定理】如果变量集 Z 满足 X→Y 的后门条件,那么对于所有可能的 x ,反事实 Yx 都与 X 以 Z 为条件独立。

                                                    P(Yx|X,Z)=P(Yx|Z)                                                       (1)

这个定理使得我们直接得到了一个有关估计P(Yx=y) 的式子:

第一个等号是全概率公式。第二个等号是根据(1)式。第三个等号是根据上一节提到的“一致性原则”:如果我们观测到X=x,那么反事实的结果与原结果保持不变,YX=x=Y。

另一个定理是关于线性系统中的反事实。这个定理告诉我们,只要 E[Y|do(X=x)] 是可估计的,任何反事实 E[YX=x|Z=e] 都是可估计的。

【定理】定义 X 对 Y 的总效应的斜率 τ 如下:

                                           =E[Y|do(x+1)]−E[Y|do(x)]

那么,对于任何已知的证据 Z=e 都有:
                                          E[YX=x|Z=e]=E[Y|Z=e]+(x−E[X|Z=e])                               (3)

在上一节课外辅导和考试成绩的例子中,我们计算了在观测到证据 e={X=0.5,H=1,Y=1} 情况下的的反事实 YH=2 。现在我们可以用公式(3)来计算参与者处理效应(effect of treatment on the treated,ETT)。

ETT=E[Y1−Y0|X=1]

根据这个定理我们可以得到:

ETT=E[Y1|X=1]−E[Y0|X=1]

=E[Y|X=1]−E[Y|X=1]+(1−E[X|X=1])−(0−E[X|X=1])=

=b+ac=0.9

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值