cuda加速pth和onnx模型对比-python部署

本文对比了CUDA加速的PyTorch(.pth)模型和ONNX模型在GPU上的运行效率。使用resnet18网络,原始.pth模型大小为89.5M,转换为ONNX后压缩至44.7M。CUDA加速后的.pth模型平均用时7ms,而未经加速的ONNX模型(CPU版)平均用时5ms。通过解决库依赖问题,CUDA加速的ONNX模型(onnxruntime-gpu)平均用时降至1ms。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.数据和网络模型

数据:[1, 3, 256, 256].

模型:resnet18

模型大小:pth89.5M 转换成onnx模型,压缩到44.7M,压缩了一半多

2.cuda加速pth模型

用时(s)平均用时7ms

0.008384227752685547
0.008441686630249023
0.006928443908691406
0.007239341735839844
0.006813764572143555
0.006902456283569336
0.006703853607177734
0.00638580322265625
0.0069429874420166016
0.006941080093383789
0.006896257400512695
0.0064046382904052734
0.0062482357025146484
0.0062847137451171875
0.006282806396484375
0.006196498870849609
0.006886482238769531
0.007439613342285156

3.不加速onnx模型(onnxruntime cpu版)

用时(s)平均用时5ms

0.005276203155517578
0.005966663360595703
0.0051767826080322266
0.00515437126159668
0.005184173583984375
0.005034923553466797
0.005269765853881836
0.005064725875854492
0.005131959915161133
0.0049817562103271484
0.00508427619934082
0.004971742630004883
0.0050334930
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值