《3D 数学基础》几何检测-最近点

目录

1. 直线上的最近点

2. 射线上的最近点

3. 点到平面的距离

4. 圆或球上的最近点

5. AABB上的最近点


1. 直线上的最近点

q'是距离q的最近点,也就是q在直线上的投影。

其中p是直线上的点(向量表示),n是直线的法向量(单位向量),d是直线到原点的距离。

2. 射线上的最近点

其中p_org是起始点,d是单位向量,t是自变量,可以无限大。

(1)先求自变量t, 点乘v·d结果就是t,因为v在d方向的投影就是点乘;

(2)带入公式p(t) = p_org + td即可求得q'=p_org + (d·(q-p_org))d。

3. 点到平面的距离

 其中q是平面外的点,平面公式是q·n=d. p是平面上的点,n是法向量。

注意:和直线上的最近点公式是一样的。

4. 圆或球上的最近点

已知球心c和半径r,求q在球面的投影点q' 。d是c-q,其中加粗都是向量表示的点坐标。b是q到q'.

5. AABB上的最近点

AABB(Axis-Aligned Bounding Box,轴对齐的包围盒)是一个在三维空间中常用于表示物体边界的几何形状,通常由两个对角点(最小点和最大点)定义。要找到空间中的点到AABB上的最近点,可以使用以下方法:

  1. 检查点是否在AABB内部:

    • 如果点在AABB内部,那么点本身就是AABB上的最近点。
  2. 检查点是否在AABB的某个坐标轴上的区间内:

    • 对于每个坐标轴(x、y、z),检查点的坐标是否在AABB的最小坐标和最大坐标之间。如果是,那么点在该坐标轴上的投影就是AABB上的最近点。
  3. 否则,找到点到AABB上的最近点:

    • 对于每个坐标轴,如果点的坐标小于AABB的最小坐标,则将点的坐标设置为AABB的最小坐标;如果点的坐标大于AABB的最大坐标,则将点的坐标设置为AABB的最大坐标。
    • 现在,点的坐标就分别被截断到了AABB的各个坐标轴上的区间内,这就是AABB上的最近点。
import numpy as np

def closest_point_to_aabb(point, aabb_min, aabb_max):
    closest_point = np.copy(point)
    
    for i in range(len(point)):
        # Check if point coordinate is outside AABB
        if point[i] < aabb_min[i]:
            closest_point[i] = aabb_min[i]
        elif point[i] > aabb_max[i]:
            closest_point[i] = aabb_max[i]
    
    return closest_point

# 示例用法
point = np.array([2, 3, 4])  # 
# AABB
aabb_min = np.array([0, 0, 0])
aabb_max = np.array([5, 5, 5])

closest = closest_point_to_aabb(point, aabb_min, aabb_max)
print("最近点:", closest)

待续。。。

参考:35.几何检测_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Mr.Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值