多机器人协同控制方法研究

        随着经济的快速发展,机器人在各行各业的普及度越来越高,与此同时,单一的机器已经逐渐不能满足人们的需求。在面对工农业生产、高危环境作业、水下与空间环境探测、卫星协同控制等复杂环境下,机器人协同研究成为一个亟待优化的问题。

        从整体来说机器人协同控制是一个涉及许多方面的问题,主要包括:路径规划、任务分配、协同控制、平滑处理四大问题。

        路径规划包括传统路径规划算法、基于采样路径规划算法、智能路径规划算法。

        其中传统路径规划算法包括:A*算法、D*算法、人工势场法。A*算法,是Dijkstra算法与广度优先搜索算法(BFS)的结合,属于启发式算法,针对全局做路径规划,目的是寻找代价最小的路径,优于Dijkstra;D*算法又称动态A*算法,使用反向搜索,即从目标点开始,由于储存了空间中每个点到终点的最短路径信息,故在重规划时效率大大提升,适用于动态环境的路径规划;人工势场法是将目标和障碍物视为均匀电场中的电荷,分别存在引力与斥力,属于局部路径规划,容易存在局部极小值,陷入局部最优解,但其路径较为平滑。

        基于采样路径规划算法包括随机路线图算法(PRM)、快速扩展随机树算法(RRT)。PRM是一种基于图搜索的算法,可以将连续状态空间转换成离散状态空间,在利用A*等搜索算法在路线图上寻找路径,提高搜索效率,适用于高维且约束复杂的路径规划,需要加入局部路径规划对其进行优化;RRT是一种通过随机构建空间填充树来有效搜索非凸,高维空间的算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值