NVIDIA机器人开放平台ISAAC 简介

Isaac简介

简介

Isaac 是 NVIDIA 的智能机器人开放平台。 Isaac SDK 提供了大量强大的 GPU 加速算法 GEM 用于导航和操作。 Isaac SDK Engine 是一个框架,可轻松编写模块化应用程序并将其部署在真实机器人上。 Isaac SDK 附带各种示例应用程序,从显示特定功能的基本示例到促进复杂机器人用例的应用程序。 Isaac SDK 还与 Isaac SIM 协同工作,允许在虚拟环境中开发、测试和训练机器人。

在这里插入图片描述

Isaac GEMs

机器人技术结合了许多不同的学科,包括低级硬件驱动程序、安全规划算法、快速准确的计算机视觉、深度神经网络和高级人工智能。在这些学科取得成功通常需要多年的专业知识。

Isaac SDK 附带一组高性能算法,也称为 GEM,以加速具有挑战性的机器人应用程序的开发。例如,Isaac 为导航和操作用例提供规划和感知 GEM。 GEM 还为关键硬件组件和机器人外围设备提供支持。

Isaac Applications

Isaac SDK 提供了各种示例应用程序,这些示例应用程序突出了 Isaac SDK 引擎的功能或专注于特定 Isaac SDK GEM 的功能。这些示例应用程序是学习 Isaac 的良好起点。

Isaac SDK 用于开发复杂用例(如送货机器人)的应用程序。 Carter 应用程序为您提供了构建自己的送货机器人的起点。卡特可以开车到目标地点,巡逻建筑物,或者给你带来爆米花。 Carter 导航堆栈基于激光雷达。

要从较小的规模开始,请参阅 Kaya 应用程序。 Isaac 包含有关如何构建自己的机器人并使用人工智能将其变为现实的说明。

Isaac SDK 也得到了丰富的生态系统的支持,Isaac SDK Engine 将 Isaac GEM 连接到现有的包,如 OpenCV、ROS、PCL 等。

在这里插入图片描述

Isaac Engine

Isaac SDK 包括 Isaac SDK 引擎,这是一个用于构建模块化机器人应用程序的功能丰富的框架。 使用 Isaac,您可以使用小组件构建应用程序,这些组件在彼此之间传递消息,并且可以配置为您的自定义用例。

在这里插入图片描述

Isaac SDK 带有基于 Bazel 构建系统的工具链,用于构建和部署应用程序。您可以使用像

bazel run //apps/samples/realsense_camera

这样简单的命令来构建和运行应用程序。所有外部依赖项都会自动拉入您的系统,无需任何额外设置。本文档的设置部分介绍了入门所需的几个步骤。

Isaac SDK 引擎完全支持 NVIDIA GPU 和 CUDA、TensorRT、NPP 和其他框架,可让您构建最快的机器人应用程序。它针对 Jetson Xavier、Jetson TX/2、Jetson Nano 和工作站 GPU 等 NVIDIA 硬件进行了优化。您可以使用一个简短的命令行脚本部署针对您的平台优化的交叉编译应用程序。

Isaac Sim

Isaac Sim 将 NVIDIA Omniverse™ 平台应用于机器人技术,具有最先进的 RTX 图形和 GPU 加速的 PhysX 模拟。您可以使用 Omniverse Connect 将工程模型从流行工具导出到 Omniverse Nucleus 服务器,并使用 Isaac Sim 编辑器构建您的模拟实验。您可以在 Omniverse 文档页面上了解有关 Isaac Sim 的更多信息。

在这里插入图片描述

Isaac SDK 还支持 Unity3D 作为导航和感知训练的模拟后端,并支持 Unity3D 高清渲染管道 (HDRP)。

<think>好的,用户现在问的是目前最好的VLA模型,也就是视觉语言动作模型。我需要先确认VLA的具体定义,因为可能有不同的解释。通常VLA指的是结合视觉、语言和动作的模型,用于机器人或其他智能体,能够根据视觉和语言输入生成动作。不过有时候可能会有不同的缩写,比如Vision-Language-Action,但需要确保准确。 接下来,我需要回顾当前最先进的模型。例如,Google的RT-2(Robotic Transformer 2)和Meta的VC-1(可能是某个模型),还有OpenAI的GPT-4结合机器人控制的部分。此外,DeepMind的RoboCat也可能相关。需要确认这些模型是否属于VLA范畴,并比较它们的性能、应用场景以及优缺点。 然后要考虑用户的需求。用户可能对机器人领域感兴趣,之前讨论过机器人领域的概况,现在想深入技术细节。用户可能是研究人员、学生或工程师,希望了解当前最先进的模型以便进一步研究或应用。需要判断用户是否需要技术细节、比较,还是更关注应用案例。 还要注意是否有最新的模型发布,比如2023年下半年或2024年的新进展,比如RT-2是在2023年7月发布的,可能目前仍然是领先的。需要确保信息的时效性。同时,可能需要解释VLA模型的基本结构,比如如何整合视觉、语言和动作模块,是否端到端训练等。 另外,用户可能对“最好”的定义有不同的标准,比如泛化能力、计算效率、实际应用中的表现等,需要明确说明这些模型的优势所在。例如,RT-2强调从网络数据中学习,提升泛化能力,而RoboCat通过多任务学习提高适应性。 需要组织回答的结构,可能分为模型介绍、关键技术、应用场景、挑战与未来方向。同时,要使用用户熟悉的术语,但避免过于晦涩,保持解释清晰。可能还需要提到开源项目,比如Open X-Embodiment,作为资源供用户参考。 最后,检查是否有遗漏的重要模型或信息,确保覆盖主流和最新的研究成果,并保持回答的客观性,指出不同模型的适用场景和限制,帮助用户根据自身需求选择合适的模型。</think>视觉-语言-动作模型(Vision-Language-Action, VLA)是近年来机器人领域的前沿方向,旨在将视觉感知、语言理解和动作决策整合到一个统一框架中,使机器人能够通过自然语言指令理解任务目标,结合视觉输入自主规划动作。以下是目前该领域的代表性模型及其技术特点: --- ### **1. 当前领先的VLA模型** #### **(1) RT-2(Robotic Transformer 2)** - **开发者**:Google DeepMind(2023年7月发布) - **核心能力**: - 基于视觉-语言大模型(如PaLM-E)的扩展,直接从图像和文本输入生成机器人动作指令。 - 利用互联网规模的视觉-语言数据预训练,显著提升泛化能力(例如从未见过的任务成功率提升3倍)。 - 支持零样本(zero-shot)任务执行,如“将可乐罐扔进回收箱”。 - **优势**:端到端学习,无需传统手工编程的动作规则,适应开放场景。 #### **(2) RoboCat** - **开发者**:DeepMind(2023年6月发布) - **核心能力**: - 首个能通过自我训练快速学习新任务的通用机器人模型。 - 基于多模态模型架构,结合视觉、语言和动作数据,可在不同机械臂上迁移学习。 - 仅需100次演示即可学会新任务(如堆叠积木)。 -1)** - **开发者**:Meta AI(2023年) - **核心能力**: - 通过统一表征学习(Unified Representation)将视觉和动作编码到同一空间。 - 支持跨任务(如抓取、导航)和跨机器人平台(如无人机、机械臂)的泛化。 - **优势**:模块化设计,易于适配不同机器人形态。 #### **(4) GPT-4 + 机器人系统** - **开发者**:OpenAI与第三方合作(如Figure 01人形机器人) - **核心能力**: - 将GPT-4的推理能力与机器人动作控制结合,通过语言指令解析复杂任务(如“整理桌子并解释步骤”)。 - 依赖额外模块(如视觉编码器、动作规划器)完成闭环控制。 - **优势**:语言理解能力极强,适合人机协作场景。 --- ### **2. 关键技术突破** - **多模态对齐**:将视觉、语言和动作映射到同一语义空间(如通过对比学习)。 - **仿真到现实迁移**:利用大规模仿真训练(如NVIDIA Isaac Sim)降低真实环境数据需求。 - **层级化决策**:将任务分解为“语言理解→视觉定位→动作序列生成”的层级结构。 - **记忆与上下文学习**:通过Transformer架构实现长时任务记忆(如持续多步骤操作)。 --- ### **3. 应用场景** - **家庭服务**:执行“把脏衣服放进洗衣机并启动”等自然语言指令。 - **工业柔性生产**:快速适应新产品装配任务(如手机零件组装)。 - **医疗辅助**:根据医生语音指令操作手术器械。 - **灾难救援**:通过指令控制机器人进入危险区域搜救。 --- ### **4. 挑战与局限** - **数据稀缺**:真实机器人动作数据获取成本高,依赖仿真补充。 - **安全性与可靠性**:开放环境中意外干扰(如光线变化、物体移动)可能引发错误动作。 - **计算成本**:实时运行需平衡模型规模与计算效率(如RT-2需约10Hz控制频率)。 --- ### **5. 未来方向** - **开源社区推动**:如Open X-Embodiment项目整合多机构机器人数据集。 - **具身智能(Embodied AI)**:让模型通过物理交互主动学习,而非被动接受数据。 - **低成本硬件适配**:轻量化模型部署至消费级机器人(如家庭陪伴机器人)。 --- 目前,**RT-2和RoboCat**在学术界和工业界认可度较高,但实际落地需结合具体场景(如工业场景更关注可靠性,家庭场景需侧重安全与交互)。若需进一步探讨某模型的技术细节或应用案例,可继续深入讨论!
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值