在CES 2025的舞台上,吴恩达教授以其一贯的深刻洞察力,为我们描绘了人工智能(AI)领域的未来图景。他的分享不仅揭示了智能体(AI Agents)的快速发展,还指出了多个AI赛道的变革方向,展现了他对技术趋势的深远思考。
以下结合吴恩达教授的观点,探讨AI未来的关键趋势以及智能体在这一进程中的重要作用。
智能体:AI发展的核心驱动力
吴恩达教授指出,智能体(AI Agents)将成为未来AI技术的核心驱动力之一。智能体是指能够感知环境、自主决策并执行任务的AI系统。 它们不仅具备强大的学习能力,还能通过与环境的交互不断优化自身行为。智能体的应用场景广泛,从家庭助理到工业机器人,从自动驾驶到虚拟助手,其潜力几乎无处不在。
吴恩达教授特别强调,智能体的发展将推动AI从“被动响应”向“主动协作”转变。 未来的智能体将不再是简单的工具,而是能够与人类紧密协作的伙伴。例如,在医疗领域,智能体可以协助医生分析病例、制定治疗方案;在教育领域,智能体可以为学生提供个性化的学习建议。这种协作模式将极大地提升效率,并改变人类与技术的互动方式。
边缘计算与AI的结合:智能体的延伸
随着物联网设备的普及,吴恩达教授认为,边缘计算与AI的结合将成为未来的一大趋势。 传统的AI处理依赖于云端计算,但这种方式存在延迟高、带宽需求大等问题。而边缘计算将AI处理能力下沉到终端设备,使得智能体能够在本地完成复杂的任务。
例如,在自动驾驶领域,边缘计算可以让车辆实时处理传感器数据,快速做出决策,从而提升安全性和响应速度。在智能家居中,边缘计算可以让设备在不依赖云端的情况下实现智能化操作。
吴恩达教授指出,边缘计算与智能体的结合,将为AI应用带来更高的实时性和可靠性。
AI与医疗的深度融合:智能体的重要应用场景
吴恩达教授特别提到,AI在医疗领域的应用将迎来爆发式增长。智能体在这一领域的潜力尤为突出。 例如,AI可以通过分析海量的医疗数据,帮助医生更准确地诊断疾病;智能体还可以根据患者的个体差异,提供个性化的治疗方案。
此外,AI在药物研发中的应用也备受关注。吴恩达教授指出,智能体可以通过模拟实验和数据分析,加速新药的研发进程,从而降低研发成本并提高成功率。这种深度融合不仅将提升医疗效率,还将为人类健康带来深远影响。
AI驱动的自动化:智能体的规模化应用
吴恩达教授认为,AI驱动的自动化将成为未来经济发展的关键动力,智能体在这一领域的应用将显著提升生产效率并降低成本。例如,在制造业中,智能体可以自动化完成复杂的生产任务;在服务业中,智能体可以提供24小时不间断的客户支持。
这种自动化趋势不仅将改变传统行业的工作方式,还将创造新的就业机会。吴恩达教授强调,未来的教育体系需要更加注重培养与AI协作的能力,以帮助人类适应这一变革。
走一步,看十步
吴恩达教授在CES 2025的分享,为我们描绘了一幅AI技术未来发展的宏伟蓝图。从智能体的崛起到边缘计算的应用,从医疗领域的突破到可持续发展的探索,他的观点不仅展现了AI技术的广阔前景,也提醒我们关注技术发展中的伦理和社会责任。
正如吴恩达教授所言,AI的发展需要“走一步,看十步”。在智能体和其他AI技术的推动下,我们正迈向一个更加智能、高效和可持续的未来。而这一过程中,人类的智慧与责任感将始终是引领技术发展的核心力量。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。