泛函分析基础4-巴拿赫空间中的基本定理2:C[a,b] 的共轭空间

2 C [ a , b ] C [ a , b ] C[a,b] 的共轭空间
前面我们已经讨论过一些空间的共轭空间,如
( l 1 ) ′ = l ∗ , ( l p ) ′ = l q , \left( l ^ { 1 } \right) ^ { \prime } = l ^ { * } , \left( l ^ { p } \right) ^ { \prime } = l ^ { q } , (l1)=l,(lp)=lq,
其中 1 p + 1 q = 1 , \frac { 1 } { p } + \frac { 1 } { q } = 1 , p1+q1=1,
p > 1. p > 1 . p>1. 这一节我们要找出 [ a , b ] [ a , b ] [a,b] 上连续函数所构成的空间
C [ a , b ] C [ a , b ] C[a,b] 的共轭空间这是里斯
的著名工作,它也可以看作是哈恩一巴拿赫定理的一个重要应用.
g ( t ) g ( t ) g(t) 是区间 [ a , b ] [ a , b ] [a,b] 上的有界变差函数,
V a b ( g ) \mathrm { V } _ { a } ^ { b } ( g ) Vab(g) g ( t ) g ( t ) g(t) [ a , b ] [ a , b ] [a,b]
上的全变差,由第
六章 S \mathrm { S } S 5定理2,积分
∫ a b f ( t ) d g ( t ) \int _ { a } ^ { b } f ( t ) \mathrm { d } g ( t ) abf(t)dg(t) 存在,其中
f ∈ C [ a , b ] , f \in C [ a , b ] , fC[a,b], 读者不难证明
∣ ∫ a b f ( t ) d g ( t ) ∣ ⩽ max ⁡ a < i < b ∣ f ( t ) ∣ ⋅ V ( g ) = ∥ f ∥ ⋅ V a b ( g ) . \left| \int _ { a } ^ { b } f ( t ) \mathrm { d } g ( t ) \right| \leqslant \max _ { a < i < b } | f ( t ) | \cdot \mathrm { V } ( g ) = \| f \| \cdot \mathrm { V } _ { a } ^ { b } ( g ) . abf(t)dg(t) maxa<i<bf(t)V(g)=fVab(g).
(1)
C [ a , b ] C [ a , b ] C[a,b] 上泛函
F ( f ) = ∫ a b f ( t ) d g ( t ) , f ∈ C [ a , b ] , F ( f ) = \int _ { a } ^ { b } f ( t ) \mathrm { d } g ( t ) , f \in C [ a , b ] , F(f)=abf(t)dg(t),fC[a,b],
(2)
由第六章 S \mathrm { S } S 5定理1, F F F C [ a , b ] C [ a , b ] C[a,b]
上线性泛函,由(1)式可知, F F F C [ a , b ] C [ a , b ] C[a,b] 上连续线性
泛函,并且 ∥ F ∥ ⩽ V a b ( g ) . \| F \| \leqslant \mathrm { V } _ { a } ^ { b } ( g ) . FVab(g).
我们自然会问: C [ a , b ] C [ a , b ] C[a,b] 上任何一个连续线性泛函 F F F 是否都
可以对应一个有界变差函数 g , g , g,
使得(2)成立?回答是肯定的,这就是下面的里斯表示
定理。
定理(里斯表示定理) C [ a , b ] C [ a , b ] C[a,b] 上每一个连续线性泛函 F F F
都可以表示成为
F ( f ) = ∫ a b f ( t ) d g ( t ) , f ∈ C [ a , b ] , F ( f ) = \int _ { a } ^ { b } f ( t ) \mathrm { d } g ( t ) , f \in C [ a , b ] , F(f)=abf(t)dg(t),fC[a,b],
(3)
其中 g ( t ) g ( t ) g(t) [ a , b ] [ a , b ] [a,b] 上有界变差函数,并且
∥ F ∥ = V a b ( g ) . \| F \| = \mathrm { V } _ { a } ^ { b } ( g ) . F=V<

  • 5
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值