极限理论总结02:弱大数律(WLLN)与强大数律(SLLN)

03.弱大数律(WLLN)

在概率论的学习中,对于 i . i . d . i.i.d. i.i.d.随机变量平均值的收敛形式及收敛条件,我们给出下述条件:

  • 对于弱大数律(WLLN),要求 E ∣ X 1 ∣ < ∞ E|X_1|<\infty EX1<

  • 对于中心极限定理,要求 C o v ( X 1 ) = Σ < ∞ Cov(X_1)=\Sigma<\infty Cov(X1)=Σ<

在以下讨论中,对于上述条件进行放宽并尝试给出定理成立的充要条件。

独立同分布情形

定理3.1:设 X 1 , X 2 , ⋯ X_1,X_2,\cdots X1,X2, 为独立同分布的随机变量。存在常数列 a n a_{n} an 使得 1 n ∑ i = 1 n X i − a n → p 0 \frac{1}{n} \sum_{i=1}^{n} X_{i}-a_{n} \stackrel{p}{\rightarrow} 0 n1i=1nXianp0 成立    ⟺    \iff x P ( ∣ X 1 ∣ > x ) → 0 , x → ∞ x \mathrm{P}\left(\left|X_{1}\right|>x\right) \rightarrow 0, x \rightarrow \infty xP(X1>x)0,x, 其中 a n a_n an可以取为 a n = E ( X 1 1 { ∣ X 1 ∣ ≤ n } ) a_{n}=\mathrm{E}\left(X_{1} 1_{\left\{\left|X_{1}\right| \leq n\right\}}\right) an=E(X11{X1n})

注:一阶矩有限仅为弱大数律成立的充分条件,想要弱大数律成立仅需尾部概率”足够小“即可。

例1:设 X 1 , X 2 , … , X n X_{1}, X_{2}, \ldots, X_{n} X1,X2,,Xn 为 i.i.d. 随机向量,生存函数为 P ( X i > x ) = e / ( x log ⁡ x ) \mathrm{P}\left(X_{i}>x\right)=e /(x \log x) P(Xi>x)=e/(xlogx) 对任意 x ≥ e x \geq e xe 。则有 E ∣ X 1 ∣ = ∞ \mathrm{E}\left|X_{1}\right|=\infty EX1= ,且存在常数列 μ n → ∞ \mu_{n} \rightarrow \infty μn 使得 X ˉ n − μ n → p 0 \bar{X}_{n}-\mu_{n} \stackrel{p}{\rightarrow} 0 Xˉnμnp0.

证明:

E ∣ X 1 ∣ = ∫ 0 ∞ P ( X 1 > y ) d y = e + ∫ 1 ∞ e t   d t = ∞ \mathrm{E}\left|X_{1}\right|=\int_{0}^{\infty} \mathrm{P}\left(X_{1}>y\right) \mathrm{d} y=e+\int_{1}^{\infty} \frac{e}{t} \mathrm{~d} t=\infty EX1=0P(X1>y)dy=e+1te dt=可知 X i X_i Xi的期望无界

x P ( ∣ X 1 ∣ ≥ x ) = e log ⁡ x → 0 \mathrm{xP}\left(\left|X_{1}\right| \geq x\right)=\frac{e}{\log x} \rightarrow 0 xP(X1x)=logxe0 x → ∞ x \rightarrow \infty x成立,则说明弱大数律成立

例2:设 X 1 , X 2 , … , X n ∼ i . i . d Cauchy ⁡ ( 0 , 1 ) X_{1}, X_{2}, \ldots, X_{n}\stackrel{i.i.d}{\sim} \operatorname{Cauchy}(0,1) X1,X2,,Xni.i.dCauchy(0,1),但对于 X ˉ n \bar{X}_n Xˉn 弱大数律不成立。

证明:
P ( ∣ X 1 ∣ > x ) = 2 ∫ x ∞ 1 π ( 1 + t 2 ) d t ∼ 2 π x − 1 \mathrm{P}\left(\left|X_{1}\right|>x\right)=2 \int_{x}^{\infty} \frac{1}{\pi\left(1+t^{2}\right)} \mathrm{d} t \sim \frac{2}{\pi} x^{-1} P(X1>x)=2xπ(1+t2)1dtπ2x1
不满足弱大数律成立的充要条件

但根据特征函数,可以得到 X ˉ n → d X 1 \bar X_n\stackrel{d}{\rightarrow}X_1 XˉndX1

不相关情形

当样本并不服从独立同分布时,要使弱大数律成立,以下考虑对二阶矩作出限制。

定理3.2:设 X 1 , X 2 , … X_{1}, X_{2}, \ldots X1,X2, 不相关,均值分别为 μ 1 , μ 2 , … \mu_{1}, \mu_{2}, \ldots μ1,μ2, ,方差分别为 σ 1 2 , σ 2 2 , … \sigma_{1}^{2}, \sigma_{2}^{2}, \ldots σ12,σ22, 且有限。如果 ∑ i = 1 n σ i 2 = o ( n 2 ) \sum_{i=1}^{n} \sigma_{i}^{2}=o\left(n^{2}\right) i=1nσi2=o(n2), 则

n − 1 ∑ i = 1 n ( X i − μ i ) → p 0 n^{-1} \sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \stackrel{p}{\rightarrow} 0 n1i=1n(Xiμi)p0

04.强大数律(SLLN)

独立同分布情形

定理4.1:(SLLN)设 X 1 , X 2 , ⋯ X_1,X_2,\cdots X1,X2,为独立同分布的随机变量。 存在常数 c c c 使得 1 n ∑ i = 1 n X i → c \frac{1}{n} \sum_{i=1}^{n} X_{i}{\rightarrow} c n1i=1nXic 成立    ⟺    \iff E ∣ X 1 ∣ < ∞ \mathrm{E}\left|X_{1}\right|<\infty EX1<, 其中 c = E ( X 1 ) c=\mathrm{E}\left(X_{1}\right) c=E(X1)

注:一阶矩有限 i . i . d i.i.d i.i.d样本强大数律成立的充要条件

样本(Pearson)相关系数

( X i , Y i ) , i = 1 , 2 , … , n \left(X_{i}, Y_{i}\right), i=1,2, \ldots, n (Xi,Yi),i=1,2,,n 为 i.i.d. 随机向量,记 E ( X 1 ) = μ X , E ( Y 1 ) = μ Y \mathrm{E}\left(X_{1}\right)=\mu_{X}, \mathrm{E}\left(Y_{1}\right)=\mu_{Y} E(X1)=μX,E(Y1)=μY Var ⁡ ( X 1 ) = σ X 2 < ∞ , Var ⁡ ( Y 1 ) = σ Y 2 < ∞ \operatorname{Var}\left(X_{1}\right)=\sigma_{X}^{2}<\infty, \operatorname{Var}\left(Y_{1}\right)=\sigma_{Y}^{2}<\infty Var(X1)=σX2<,Var(Y1)=σY2<, 和 Cor ⁡ ( X 1 , Y 1 ) = ρ . \operatorname{Cor}\left(X_{1}, Y_{1}\right)=\rho . Cor(X1,Y1)=ρ. 则样本(Pearson)相关系数
r n = ∑ i = 1 n ( X i − X ˉ n ) ( Y i − Y ˉ n ) ∑ i = 1 n ( X i − X ˉ n ) 2 ∑ i = 1 n ( Y i − Y ˉ n ) 2 r_{n}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)\left(Y_{i}-\bar{Y}_{n}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}_{n}\right)^{2}}} rn=i=1n(XiXˉn)2 i=1n(YiYˉn)2 i=1n(XiXˉn)(YiYˉn)几乎处处收敛到 ρ \rho ρ

证明:

r n r_n rn变形为:
r n = 1 n ∑ X i Y i − X ˉ n Y ˉ n ( 1 n ∑ X i 2 − X ˉ n 2 ) ( 1 n ∑ Y i 2 − Y ˉ n 2 ) r_{n}=\frac{\frac{1}{n} \sum X_{i} Y_{i}-\bar{X}_{n} \bar{Y}_{n}}{\sqrt{\left(\frac{1}{n} \sum X_{i}^{2}-\bar{X}_{n}^{2}\right)\left(\frac{1}{n} \sum Y_{i}^{2}-\bar{Y}_{n}^{2}\right)}} rn=(n1Xi2Xˉn2)(n1Yi2Yˉn2) n1XiYiXˉnYˉn
由强大数律和连续映射定理可知: r n → w p 1 E ( X 1 Y 1 ) − μ X μ Y σ X σ Y = ρ r_{n}\stackrel{wp1}{\rightarrow} \frac{\mathrm{E}(X_1Y_1)-\mu_X \mu_Y}{\sigma_X \sigma_Y}=\rho rnwp1σXσYE(X1Y1)μXμY=ρ

独立情形

当样本不满足同分布条件时,要使强大数律成立,以下考虑对二阶矩做出限制。

定理4.2:设 X 1 , X 2 , … X_{1}, X_{2}, \ldots X1,X2, 独立,均值分别为 μ 1 , μ 2 , … \mu_{1}, \mu_{2}, \ldots μ1,μ2, ,方差分别为 σ 1 2 , σ 2 2 , … \sigma_{1}^{2}, \sigma_{2}^{2}, \ldots σ12,σ22, 且有限。如果 ∑ i = 1 ∞ σ i 2 / p 2 < ∞ \sum_{i=1}^{\infty} \sigma_{i}^{2} / p^{2}<\infty i=1σi2/p2<, 则 n − 1 ∑ i = 1 n ( X i − μ i ) → w p 1 0 n^{-1} \sum_{i=1}^{n}\left(X_{i}-\mu_{i}\right) \stackrel{w p 1}{\rightarrow} 0 n1i=1n(Xiμi)wp10

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值