一、水下双目测距的标定技术
- 激光测距仪辅助标定
通过激光测距仪与双目相机结合,建立二者的位置关系,利用激光测距仪的高精度测量值校正双目相机的初始标定参数。这种方法可以有效提高水下双目相机的标定精度,降低测距误差。
- 基于水下光线折射模型的标定
分析光线在多介质中的传播路径,确定折射参数并推导像点与三维空间点之间的映射关系,从而实现精确定位。
二、水下图像增强与处理
- 全局与局部联合约束的图像复原方法
提出基于全局与局部联合约束的水下退化光学图像复原方法,提升水下图像的视觉对比度与清晰度。
- 深度学习辅助的图像增强
使用深度学习模型(如Water-Net)或暗通道先验方法去除散射,增强图像质量,从而提高特征匹配的鲁棒性。
三、水下目标检测与位姿估计
- 深度学习改进的目标检测
研究人员在YOLOv4等算法基础上进行改进,通过特征强化等方式提升水下目标检测效果。例如,Shi等人提出的多目标蜻蜓优化算法(MODA)在水下数据集中达到了98.41%的识别成功率。
- 位姿估计技术
在目标位姿估计方面,Li等人使用改进的YOLO-T算法获取目标物体的精确轮廓,并结合特征点排序算法进行定位,避免了人工标记。
四、水下双目测距的应用案例
- 水下机器人集成
研发的水下双目视觉测量软件已集成于水下机器人(ROV),并应用于水利与海洋工程的检测任务中,达到了国际领先水平。
- 水下目标抓取与对接
水下机器人通过视觉与机械臂的协调控制,成功实现了水下目标的抓取和对接任务。例如,斯坦福大学的Ocean One在水池中验证了视觉与机械臂抓取的协调控制。
五、水下双目测距的挑战与解决方案
- 动态环境扰动
采用在线自适应标定技术(如SLAM算法)实时优化相机参数,结合IMU和深度计等多传感器数据,补偿视觉误差。
- 折射率变化
通过辅助传感器(如盐度计)动态更新水的折射率,以适应不同水体环境。
六、总结
水下双目测距技术在标定精度、图像增强、目标检测与位姿估计等方面取得了显著进展。通过激光测距仪辅助标定、深度学习增强图像处理以及多传感器融合等技术,水下双目测距系统在复杂水下环境中表现出了更高的鲁棒性和精度。这些技术的发展为水下资源勘探、工程检测和机器人作业提供了有力支持。