LoadImage
createVoc -> createScoringObject:
score用L1 norm (估计算Vocabulary时用到L1 norm)
ORBVoc.txt共有104450行
下面来探索下每行的数字是什么
第一行是4个数,后面每行是35个数(字典中每个keypoint连接35个keypoints)
10 6 0 0
0 0 252 188 188 242 169 109 85 143 187 191 164 25 222 255 72 27 129 215 237 16 58 111 219 51 219 211 85 127 192 112 134 34 0
第一行:
m_k = 10, m_L = 6(KL数,每个node连接K个节点,共L层,可容纳10^6个词), n1 = 0(表示L1 NORM,定义在ScoringType里), n2=0 (TF_IDF,WeightingType)
第2行,第一个:pid=0, 就是parent id, 也就是说当前行的nid=1(第一行正经元素),它的parent是pid=0,
然后是双向的,pid的children就是nid
第2个数字0,表示当前node是不是叶子,现在是0表示不是叶子
然后树节点vector和叶子节点(