(一)ORB-SLAM3 中 orb 特征提取匹配部分详解

 ORBextractor.cc 代码详解(按代码执行顺序分析)

本次我们对ORBextractor.cc的代码入口、构造函数、仿函数实现进行逻辑分析,下一篇再对里面的具体函数进行逐行分析

首先一些参数:

const int PATCH_SIZE = 31;			//使用灰度质心法计算特征点的方向信息时,图像块的大小,或者说是直径
const int HALF_PATCH_SIZE = 15;		//上面这个大小的一半,或者说是半径
const int EDGE_THRESHOLD = 19;		//算法生成的图像边
//生成这个边的目的是进行图像金子塔的生成时,需要对图像进行高斯滤波处理,为了考虑到使滤波后的图像边界处的像素也能够携带有正确的图像信息,

const float factorPI = (float)(CV_PI/180.f);//乘数因子,一度对应着多少弧度

ORBextractor.cc的代码入口是Tracking.cc中的void Tracking::newParameterLoader()读取参数函数中创建ORBextractor对象,具体在:

mpORBextractorLeft = new ORBextractor(nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);

if(mSensor==System::STEREO || mSensor==System::IMU_STEREO)
        mpORBextractorRight = new ORBextractor(nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);

if(mSensor==System::MONOCULAR || mSensor==System::IMU_MONOCULAR)
        mpIniORBextractor = new ORBextractor(5*nFeatures,fScaleFactor,nLevels,fIniThFAST,fMinThFAST);

根据参数构造ORB提取器mpORBextractorLeft(左目)、mpORBextractorRight(右目),然后执行特征点提取器的构造函数ORBextractor::ORBextractor(),如下:

ORBextractor::ORBextractor(int _nfeatures,		//指定要提取的特征点数目
						   float _scaleFactor,	//指定图像金字塔的缩放系数
						   int _nlevels,		//指定图像金字塔的层数
						   int _iniThFAST,		//指定初始的FAST特征点提取参数,可以提取出最明显的角点
						   int _minThFAST):		//如果因为图像纹理不丰富提取出的特征点不多,为了达到想要的特征点数目,
												//就使用这个参数提取出不是那么明显的角点
    nfeatures(_nfeatures), scaleFactor(_scaleFactor), nlevels(_nlevels),
    iniThFAST(_iniThFAST), minThFAST(_minThFAST)//设置这些参数
{
	//存储每层图像缩放系数的vector调整为符合图层数目的大小
    mvScaleFactor.resize(nlevels);  
	//存储这个sigma^2,其实就是每层图像相对初始图像缩放因子的平方
    mvLevelSigma2.resize(nlevels);
	//对于初始图像,这两个参数都是1
    mvScaleFactor[0]=1.0f;
    mvLevelSigma2[0]=1.0f;
	//然后逐层计算图像金字塔中图像相当于初始图像的缩放系数 
    for(int i=1; i<nlevels; i++)  
    {
		//其实就是这样累乘计算得出来的
        mvScaleFactor[i]=mvScaleFactor[i-1]*scaleFactor;
		//原来这里的sigma^2就是每层图像相对于初始图像缩放因子的平方
        mvLevelSigma2[i]=mvScaleFactor[i]*mvScaleFactor[i];
    }

    //接下来的两个向量保存上面的参数的倒数,操作都是一样的就不再赘述了
    mvInvScaleFactor.resize(nlevels);
    mvInvLevelSigma2.resize(nlevels);
    for(int i=0; i<nlevels; i++)
    {
        mvInvScaleFactor[i]=1.0f/mvScaleFactor[i];
        mvInvLevelSigma2[i]=1.0f/mvLevelSigma2[i];
    }

    //调整图像金字塔vector以使得其符合咱们设定的图像层数
    mvImagePyramid.resize(nlevels);

	//每层需要提取出来的特征点个数,这个向量也要根据图像金字塔设定的层数进行调整
    mnFeaturesPerLevel.resize(nlevels);
	
	//图片降采样缩放系数的倒数
    float factor = 1.0f / scaleFactor;
	//每个单位缩放系数所希望的特征点个数
    float nDesiredFeaturesPerScale = nfeatures*(1 - factor)/(1 - (float)pow((double)factor, (double)nlevels));

	//用于在特征点个数分配的,特征点的累计计数清空
    int sumFeatures = 0;
	//开始逐层计算要分配的特征点个数,顶层图像除外(看循环后面)
    for( int level = 0; level < nlevels-1; level++ )
    {
		//分配 cvRound : 返回个参数最接近的整数值
        mnFeaturesPerLevel[level] = cvRound(nDesiredFeaturesPerScale);
		//累计
        sumFeatures += mnFeaturesPerLevel[level];
		//乘系数
        nDesiredFeaturesPerScale *= factor;
    }
    //由于前面的特征点个数取整操作,可能会导致剩余一些特征点个数没有被分配,所以这里就将这个余出来的特征点分配到最高的图层中
    mnFeaturesPerLevel[nlevels-1] = std::max(nfeatures - sumFeatures, 0);

	//成员变量pattern的长度,也就是点的个数,这里的512表示512个点(上面的数组中是存储的坐标所以是256*2*2)
    const int npoints = 512;
	//获取用于计算BRIEF描述子的随机采样点点集头指针
	//注意到pattern0数据类型为Points*,bit_pattern_31_是int[]型,所以这里需要进行强制类型转换
    const Point* pattern0 = (const Point*)bit_pattern_31_;	
	//使用std::back_inserter的目的是可以快覆盖掉这个容器pattern之前的数据
	//其实这里的操作就是,将在全局变量区域的、int格式的随机采样点以cv::point格式复制到当前类对象中的成员变量中
    std::copy(pattern0, pattern0 + npoints, std::back_inserter(pattern));

    //This is for orientation
	//下面的内容是和特征点的旋转计算有关的
    // pre-compute the end of a row in a circular patch
	//预先计算圆形patch中行的结束位置
	//+1中的1表示那个圆的中间行
    umax.resize(HALF_PATCH_SIZE + 1);
	
	//cvFloor返回不大于参数的最大整数值,cvCeil返回不小于参数的最小整数值,cvRound则是四舍五入
    int v,		//循环辅助变量
		v0,		//辅助变量
		vmax = cvFloor(HALF_PATCH_SIZE * sqrt(2.f) / 2 + 1);	//计算圆的最大行号,+1应该是把中间行也给考虑进去了
				//NOTICE 注意这里的最大行号指的是计算的时候的最大行号,此行的和圆的角点在45°圆心角的一边上,之所以这样选择
				//是因为圆周上的对称特性
				
	//这里的二分之根2就是对应那个45°圆心角
    
    int vmin = cvCeil(HALF_PATCH_SIZE * sqrt(2.f) / 2);
	//半径的平方
    const double hp2 = HALF_PATCH_SIZE*HALF_PATCH_SIZE;

	//利用圆的方程计算每行像素的u坐标边界(max)
    for (v = 0; v <= vmax; ++v)
        umax[v] = cvRound(sqrt(hp2 - v * v));		//结果都是大于0的结果,表示x坐标在这一行的边界

    // Make sure we are symmetric
	//这里其实是使用了对称的方式计算上四分之一的圆周上的umax,目的也是为了保持严格的对称(如果按照常规的想法做,由于cvRound就会很容易出现不对称的情况,
	//同时这些随机采样的特征点集也不能够满足旋转之后的采样不变性了)
	for (v = HALF_PATCH_SIZE, v0 = 0; v >= vmin; --v)
    {
        while (umax[v0] == umax[v0 + 1])
            ++v0;
        umax[v] = v0;
        ++v0;
    }
}

然后执行仿函数(重载括号运算符)方法来计算图像特征点

步骤:

Step 1.检查图像有效性

Step 2.构建图像金字塔(ComputePyramid(image)函数)

Step 3 计算图像的特征点,并且将特征点进行均匀化(ComputeKeyPointsOctTree(allKeypoints)四叉树方式计算的函数)

Step 4 拷贝图像描述子到新的矩阵descriptors

Step 5 对图像进行高斯模糊

Step 6 计算高斯模糊后图像的描述子(computeDescriptors()函数)

Step 7 对非第0层图像中的特征点的坐标恢复到第0层图像(原图像)的坐标系下

int ORBextractor::operator()( InputArray _image, InputArray _mask, vector<KeyPoint>& _keypoints,
                                  OutputArray _descriptors, std::vector<int> &vLappingArea)
    {
	// Step 1 检查图像有效性。如果图像为空,那么就直接返回
        if(_image.empty())
            return -1;

	//获取图像的大小
    Mat image = _image.getMat();
	//判断图像的格式是否正确,要求是单通道灰度值
    assert(image.type() == CV_8UC1 );

    // Pre-compute the scale pyramid
    // Step 2 构建图像金字塔
    ComputePyramid(image);

    // Step 3 计算图像的特征点,并且将特征点进行均匀化。均匀的特征点可以提高位姿计算精度
	// 存储所有的特征点,注意此处为二维的vector,第一维存储的是金字塔的层数,第二维存储的是那一层金字塔图像里提取的所有特征点
    vector < vector<KeyPoint> > allKeypoints; 
    //使用四叉树的方式计算每层图像的特征点并进行分配
    ComputeKeyPointsOctTree(allKeypoints);

	//使用传统的方法提取并平均分配图像的特征点,作者并未使用
    //ComputeKeyPointsOld(allKeypoints);

	
	// Step 4 拷贝图像描述子到新的矩阵descriptors
    Mat descriptors;

	//统计整个图像金字塔中的特征点
    int nkeypoints = 0;
	//开始遍历每层图像金字塔,并且累加每层的特征点个数
    for (int level = 0; level < nlevels; ++level)
        nkeypoints += (int)allKeypoints[level].size();
	
	//如果本图像金字塔中没有任何的特征点
    if( nkeypoints == 0 )
		//通过调用cv::mat类的.realse方法,强制清空矩阵的引用计数,这样就可以强制释放矩阵的数据了
		//参考[https://blog.csdn.net/giantchen547792075/article/details/9107877]
        _descriptors.release();
    else
    {
		//如果图像金字塔中有特征点,那么就创建这个存储描述子的矩阵,注意这个矩阵是存储整个图像金字塔中特征点的描述子的
        _descriptors.create(nkeypoints,		//矩阵的行数,对应为特征点的总个数
							32, 			//矩阵的列数,对应为使用32*8=256位描述子
							CV_8U);			//矩阵元素的格式
		//获取这个描述子的矩阵信息
		// ?为什么不是直接在参数_descriptors上对矩阵内容进行修改,而是重新新建了一个变量,复制矩阵后,在这个新建变量的基础上进行修改?
        descriptors = _descriptors.getMat();
    }

        //_keypoints.clear();
        //_keypoints.reserve(nkeypoints);
        _keypoints = vector<cv::KeyPoint>(nkeypoints);
	//因为遍历是一层一层进行的,但是描述子那个矩阵是存储整个图像金字塔中特征点的描述子,所以在这里设置了Offset变量来保存“寻址”时的偏移量,
	//辅助进行在总描述子mat中的定位
        int offset = 0;
        //Modified for speeding up stereo fisheye matching
        int monoIndex = 0, stereoIndex = nkeypoints-1;
        for (int level = 0; level < nlevels; ++level)
        {
		//获取在allKeypoints中当前层特征点容器的句柄
            vector<KeyPoint>& keypoints = allKeypoints[level];
		//本层的特征点数
            int nkeypointsLevel = (int)keypoints.size();

            if(nkeypointsLevel==0)
                continue;

        // preprocess the resized image 
        //  Step 5 对图像进行高斯模糊
		// 深拷贝当前金字塔所在层级的图像
        Mat workingMat = mvImagePyramid[level].clone();

		// 注意:提取特征点的时候,使用的是清晰的原图像;这里计算描述子的时候,为了避免图像噪声的影响,使用了高斯模糊
        GaussianBlur(workingMat, 		//源图像
					 workingMat, 		//输出图像
					 Size(7, 7), 		//高斯滤波器kernel大小,必须为正的奇数
					 2, 				//高斯滤波在x方向的标准差
					 2, 				//高斯滤波在y方向的标准差
					 BORDER_REFLECT_101);//边缘拓展点插值类型

            // Compute the descriptors
		// desc存储当前图层的描述子
            //Mat desc = descriptors.rowRange(offset, offset + nkeypointsLevel);
            Mat desc = cv::Mat(nkeypointsLevel, 32, CV_8U);
			// Step 6 计算高斯模糊后图像的描述子
        computeDescriptors(workingMat, 	//高斯模糊之后的图层图像
						   keypoints, 	//当前图层中的特征点集合
						   desc, 		//存储计算之后的描述子
						   pattern);	//随机采样点集

		// 更新偏移量的值 
        offset += nkeypointsLevel;

        // Scale keypoint coordinates
		// Step 6 对非第0层图像中的特征点的坐标恢复到第0层图像(原图像)的坐标系下
        // 得到所有层特征点在第0层里的坐标放到_keypoints里面
		// 对于第0层的图像特征点,他们的坐标就不需要再进行恢复了
            float scale = mvScaleFactor[level]; //getScale(level, firstLevel, scaleFactor);
            int i = 0;
            for (vector<KeyPoint>::iterator keypoint = keypoints.begin(),
                         keypointEnd = keypoints.end(); keypoint != keypointEnd; ++keypoint){

                // Scale keypoint coordinates
                if (level != 0){
					// 特征点本身直接乘缩放倍数就可以了
                    keypoint->pt *= scale;
                }
                
                if(keypoint->pt.x >= vLappingArea[0] && keypoint->pt.x <= vLappingArea[1]){
                    _keypoints.at(stereoIndex) = (*keypoint);
                    desc.row(i).copyTo(descriptors.row(stereoIndex));
                    stereoIndex--;
                }
                else{
                    _keypoints.at(monoIndex) = (*keypoint);
                    desc.row(i).copyTo(descriptors.row(monoIndex));
                    monoIndex++;
                }
                i++;
            }
        }
        //cout << "[ORBextractor]: extracted " << _keypoints.size() << " KeyPoints" << endl;
        return monoIndex;
    }

  • 2
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
ORB-SLAM是一种基于特征点的视觉SLAM算法,它使用ORB特征点来进行特征匹配ORB特征点是一种既能够快速检测又能够准确描述图像特征的算法ORB特征点的检测和描述分别使用了FAST角点检测算法和BRIEF描述子算法ORB-SLAM使用了基于词袋模型的方法来进行特征匹配,具体来说,ORB-SLAM将所有的ORB特征点分成若干个不同的视觉词汇,然后使用BoW(Bag of Words)模型来描述每个图像。在ORB-SLAM特征匹配主要分为两个步骤:词袋匹配和光流法匹配。词袋匹配是通过计算两个图像的词袋向量之间的距离来进行的,而光流法匹配则是通过计算两个图像的特征点在相邻帧之间的运动来进行的。 以下是一个ORB-SLAM特征匹配算法的示例代码: ```c++ // ORB特征点检测和描述 cv::Ptr<cv::ORB> orb = cv::ORB::create(); std::vector<cv::KeyPoint> keypoints1, keypoints2; cv::Mat descriptors1, descriptors2; orb->detectAndCompute(img1, cv::noArray(), keypoints1, descriptors1); orb->detectAndCompute(img2, cv::noArray(), keypoints2, descriptors2); // 词袋匹配 cv::Ptr<cv::DescriptorMatcher> matcher = cv::DescriptorMatcher::create("BruteForce-Hamming"); std::vector<cv::DMatch> matches; matcher->match(descriptors1, descriptors2, matches); // 光流法匹配 std::vector<cv::Point2f> points1, points2; for (auto match : matches) { points1.push_back(keypoints1[match.queryIdx].pt); points2.push_back(keypoints2[match.trainIdx].pt); } std::vector<uchar> status; std::vector<float> err; cv::calcOpticalFlowPyrLK(img1, img2, points1, points2, status, err); // 输出匹配结果 for (int i = 0; i < matches.size(); i++) { if (status[i]) { cv::DMatch match = matches[i]; cv::Point2f pt1 = keypoints1[match.queryIdx].pt; cv::Point2f pt2 = keypoints2[match.trainIdx].pt; std::cout << "Match " << i << ": (" << pt1.x << ", " << pt1.y << ") -> (" << pt2.x << ", " << pt2.y << ")" << std::endl; } } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值