1. COPOD: Copula-Based Outlier Detection
该论文利用ecdf+copula统计给出了一种新的多维组合的异常检测方法,主要解决了2个问题:
1.多维随机变量之间的相关性。
2.不同分布状况不能统一用3sigma去做尾端的预测。
详见知乎:COPOD:用「统计」+「机器学习」检测异常 - 知乎
2. Revisiting Time Series Outlier Detection: Definitions and Benchmarks
本文重新将时间序列中的异常进行了分类,基于不同的类别进行了不同时间序列异常检测算法的基准测试。
那么问题又来了,我这么知道当前异常是什么类型的异常呢? 根据分类和时间序列异常情况,建设一个标签系统和分类器,每当出现异常的时候,我们可以抽取异常附近的一个完整的时间序列,根据分类器输出异常类别,根据不同的类别进行响应的算法选型。
3.A Large-scale Study on Unsupervised Outlier Model Selection: Do Internal Strategies Suffice?
本文给出了一种异常检测无监督学习的结果度量方式,不过还处于初级阶段。
4.XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning
将无监督学习输出的分数作为监督学习异常检测的特征。
5. PyOD: A Python Toolbox for Scalable Outlier Detection
集成了很多的异常检测算法。
6. LSCP: Locally selective combination in parallel outlier ensembles
利用knn选择最近的特征数据空间,再利用[mean,max]伪造标签进行预训练,利用person计算伪造标签组合的距离,选择相似的模型组合。
7. SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier Detection
数据维度:降维
模型维度:标签代替无监督。
系统维度:调度+标签预测训练时间,冲洗组合。