时间序列异常检测几篇论文解读

1. COPOD: Copula-Based Outlier Detection

该论文利用ecdf+copula统计给出了一种新的多维组合的异常检测方法,主要解决了2个问题:

1.多维随机变量之间的相关性。

2.不同分布状况不能统一用3sigma去做尾端的预测。

详见知乎:COPOD:用「统计」+「机器学习」检测异常 - 知乎

2. Revisiting Time Series Outlier Detection: Definitions and Benchmarks

本文重新将时间序列中的异常进行了分类,基于不同的类别进行了不同时间序列异常检测算法的基准测试。

那么问题又来了,我这么知道当前异常是什么类型的异常呢? 根据分类和时间序列异常情况,建设一个标签系统和分类器,每当出现异常的时候,我们可以抽取异常附近的一个完整的时间序列,根据分类器输出异常类别,根据不同的类别进行响应的算法选型。

3.A Large-scale Study on Unsupervised Outlier Model Selection: Do Internal Strategies Suffice?

本文给出了一种异常检测无监督学习的结果度量方式,不过还处于初级阶段。

4.XGBOD: Improving Supervised Outlier Detection with Unsupervised Representation Learning

将无监督学习输出的分数作为监督学习异常检测的特征。

5. PyOD: A Python Toolbox for Scalable Outlier Detection

集成了很多的异常检测算法。

6. LSCP: Locally selective combination in parallel outlier ensembles

利用knn选择最近的特征数据空间,再利用[mean,max]伪造标签进行预训练,利用person计算伪造标签组合的距离,选择相似的模型组合。

7. SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier Detection

数据维度:降维

模型维度:标签代替无监督。

系统维度:调度+标签预测训练时间,冲洗组合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值