Q: To prove there is no rational solution of equation: x 2 + y 2 = 7 x^2+y^2=7 x2+y2=7
prove:
If exist rational solution of equation: x 2 + y 2 = 7 x^2+y^2=7 x2+y2=7
Then we have integer numbers ‘a,b,c’ satisfying:
( a c ) 2 + ( b c ) 2 = 7 (\frac{a}{c})^2+(\frac{b}{c})^2=7 (ca)2+(cb)2=7
Then a 2 + b 2 = 7 c 2 ≡ 0 ( m o d 7 ) a^2+b^2=7c^2 \equiv 0 (mod 7) a2+b2=7c2≡0(mod7)
We know for a integer y, existing y 2 ≡ 0 , 1 , 2 , 4 ( m o d 7 ) y^2 \equiv 0,1,2,4(mod 7) y2≡0,1,2,4(mod7)[^1]
So a 2 ≡ 0 ( m o d 7 ) a^2 \equiv 0(mod 7) a2≡0(mod7), b 2 ≡ 0 ( m o d 7 ) b^2 \equiv 0(mod 7) b2≡0(mod7)
Let a = 7 d a=7d a=7d and b = 7 e b=7e b=7e
Then 7 d 2 + 7 e 2 = c 2 7d^2+7e^2=c^2 7d2+7e2=c2
Same as above: here c 2 ≡ 0 ( m o d 7 ) c^2 \equiv 0(mod 7) c2≡0(mod7)
Let c = 7 f c=7f c=7f
Then d 2 + e 2 = 7 f 2 d^2+e^2=7f^2 d2+e2=7f2
Here we compare : { d 2 + e 2 = 7 f 2 a 2 + b 2 = 7 c 2 \begin{cases} d^2+e^2=7f^2\\ a^2+b^2=7c^2\end{cases} {d2+e2=7f2a2+b2=7c2
We get f = c f=c f=c
But we setted c = 7 f c=7f c=7f
Contradictio!
Hence there is no rational solution of equation: x 2 + y 2 = 7 x^2+y^2=7 x2+y2=7**
[^1] For any integer a a a, we could mark it as:
a = 7 n + m ( n ∈ Z , 0 ≤ m ≤ 6 ) a=7n+m (n\in Z,0\le m \le6) a=7n+m(n∈Z,0≤m≤6)
So a 2 ( m o d 7 ) = ( 7 n + m ) 2 ( m o d 7 ) = m 2 ( m o d 7 ) ( 0 ≤ m ≤ 6 ) a^2 (mod 7)=(7n+m)^2(mod 7)=m^2(mod 7) (0\le m \le6) a2(mod7)=(7n+m)2(mod7)=m2(mod7)(0≤m≤6)
Hence a 2 ≡ 0 , 1 , 2 , 4 ( m o d 7 ) a^2 \equiv 0,1,2,4(mod 7) a2≡0,1,2,4(mod7)