【线性代数基础进阶】行列式-补充+练习

本文介绍了线性代数中爪型行列式的计算方法,通过提公因式转化为三角行列式,展示了如何利用加边法简化行列式计算,并给出了范德蒙行列式的证明思路,通过递归方式证明了特定n阶行列式的值。
摘要由CSDN通过智能技术生成

爪型行列式

爪型行列式的标准形式,即行列式的主对角线有值,第一行、第一列剩余位置为 1 1 1,其他位置为 0 0 0,形如
D = ∣ a 0 1 1 ⋯ 1 1 a 1 0 ⋯ 0 1 0 a 2 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 1 0 0 ⋯ a n ∣ D=\begin{vmatrix} a_{0} & 1 & 1 & \cdots & 1 \\ 1 & a_{1} & 0 & \cdots & 0 \\ 1 & 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & a_{n} \end{vmatrix} D= a01111a10010a20100an
计算爪型行列式时,通常利用提公因式的方法,除第一行外,每行都把因子为 a i a_{i} ai提到行列式外,再将其转化为三角行列式,即
D = a 1 a 2 ⋯ a n ∣ a 0 1 1 ⋯ 1 1 a 1 1 0 ⋯ 0 1 a 2 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 1 a n 0 0 ⋯ 1 ∣ = ∏ i = 1 n a i ∣ a 0 − ∑ i = 1 n 1 a i 0 0 ⋯ 0 1 a 1 1 0 ⋯ 0 1 a 2 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 1 a n 0 0 ⋯ 1 ∣ = ∏ i = 1 n a i ( a 0 − ∑ i = 1 n 1 a i ) \begin{aligned} D&=a_{1}a_{2}\cdots a_{n}\begin{vmatrix} a_{0} & 1 & 1 & \cdots & 1 \\ \frac{1}{a_{1}} & 1 & 0 & \cdots & 0 \\ \frac{1}{a_{2}} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ \frac{1}{a_{n}} & 0 & 0 & \cdots & 1 \end{vmatrix}\\ &=\prod^{n}_{i=1}a_{i}\begin{vmatrix} a_{0}-\sum\limits^{n}_{i=1} \frac{1}{a_{i}} & 0 & 0 & \cdots & 0 \\ \frac{1}{a_{1}} & 1 & 0 & \cdots & 0 \\ \frac{1}{a_{2}} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ \frac{1}{a_{n}} & 0 & 0 & \cdots & 1 \end{vmatrix}\\ &=\prod^{n}_{i=1}a_{i}(a_{0}-\sum\limits^{n}_{i=1} \frac{1}{a_{i}}) \end{aligned} D=a1a2an a0a11a21an1110010101001 =i=1nai a0i=1nai1a11a21an1010000100001 =i=1nai(a0i=1nai1)
只要行列式除了主对角线上的元素外,其他各列的元素都相同,就可以每行减去第一行,转化为爪型行列式,形如
D = ∣ x 1 a 2 a 3 a 4 a 1 x 2 a 3 a 4 a 1 a 2 x 3 a 4 a 1 a 2 a 3 x 4 ∣ = ∣ x 1 a 2 a 3 a 4 a 1 − x 1 x 2 − a 2 0 0 a 1 − x 1 0 x 3 − a 3 0 a 1 − x 1 0 0 x 4 − a 4 ∣ D=\begin{vmatrix} x_{1} & a_{2} & a_{3} & a_{4} \\ a_{1} & x_{2} & a_{3} & a_{4} \\ a_{1} & a_{2} & x_{3} & a_{4} \\ a_{1} & a_{2} & a_{3} & x_{4} \end{vmatrix}=\begin{vmatrix} x_{1} & a_{2} & a_{3} & a_{4} \\ a_{1}-x_{1} & x_{2}-a_{2} & 0 & 0 \\ a_{1}-x_{1} & 0 & x_{3}-a_{3} & 0 \\ a_{1}-x_{1} & 0 & 0 & x_{4}-a_{4} \end{vmatrix} D= x1a1a1a1a2x2a2a2a3a3x3a3a4a4a4x4 = x1a1x1a1x1a1x1a2x2a200a30x3a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值