爪型行列式
爪型行列式的标准形式,即行列式的主对角线有值,第一行、第一列剩余位置为 1 1 1,其他位置为 0 0 0,形如
D = ∣ a 0 1 1 ⋯ 1 1 a 1 0 ⋯ 0 1 0 a 2 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 1 0 0 ⋯ a n ∣ D=\begin{vmatrix} a_{0} & 1 & 1 & \cdots & 1 \\ 1 & a_{1} & 0 & \cdots & 0 \\ 1 & 0 & a_{2} & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & 0 & 0 & \cdots & a_{n} \end{vmatrix} D=∣
∣a011⋮11a10⋮010a2⋮0⋯⋯⋯⋯100⋮an∣
∣
计算爪型行列式时,通常利用提公因式的方法,除第一行外,每行都把因子为 a i a_{i} ai提到行列式外,再将其转化为三角行列式,即
D = a 1 a 2 ⋯ a n ∣ a 0 1 1 ⋯ 1 1 a 1 1 0 ⋯ 0 1 a 2 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 1 a n 0 0 ⋯ 1 ∣ = ∏ i = 1 n a i ∣ a 0 − ∑ i = 1 n 1 a i 0 0 ⋯ 0 1 a 1 1 0 ⋯ 0 1 a 2 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋮ 1 a n 0 0 ⋯ 1 ∣ = ∏ i = 1 n a i ( a 0 − ∑ i = 1 n 1 a i ) \begin{aligned} D&=a_{1}a_{2}\cdots a_{n}\begin{vmatrix} a_{0} & 1 & 1 & \cdots & 1 \\ \frac{1}{a_{1}} & 1 & 0 & \cdots & 0 \\ \frac{1}{a_{2}} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ \frac{1}{a_{n}} & 0 & 0 & \cdots & 1 \end{vmatrix}\\ &=\prod^{n}_{i=1}a_{i}\begin{vmatrix} a_{0}-\sum\limits^{n}_{i=1} \frac{1}{a_{i}} & 0 & 0 & \cdots & 0 \\ \frac{1}{a_{1}} & 1 & 0 & \cdots & 0 \\ \frac{1}{a_{2}} & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ \frac{1}{a_{n}} & 0 & 0 & \cdots & 1 \end{vmatrix}\\ &=\prod^{n}_{i=1}a_{i}(a_{0}-\sum\limits^{n}_{i=1} \frac{1}{a_{i}}) \end{aligned} D=a1a2⋯an∣
∣a0a11a21⋮an1110⋮0101⋮0⋯⋯⋯⋯100⋮1∣
∣=i=1∏nai∣
∣a0−i=1∑nai1a11a21⋮an1010⋮0001⋮0⋯⋯⋯⋯000⋮1∣
∣=i=1∏nai(a0−i=1∑nai1)
只要行列式除了主对角线上的元素外,其他各列的元素都相同,就可以每行减去第一行,转化为爪型行列式,形如
D = ∣ x 1 a 2 a 3 a 4 a 1 x 2 a 3 a 4 a 1 a 2 x 3 a 4 a 1 a 2 a 3 x 4 ∣ = ∣ x 1 a 2 a 3 a 4 a 1 − x 1 x 2 − a 2 0 0 a 1 − x 1 0 x 3 − a 3 0 a 1 − x 1 0 0 x 4 − a 4 ∣ D=\begin{vmatrix} x_{1} & a_{2} & a_{3} & a_{4} \\ a_{1} & x_{2} & a_{3} & a_{4} \\ a_{1} & a_{2} & x_{3} & a_{4} \\ a_{1} & a_{2} & a_{3} & x_{4} \end{vmatrix}=\begin{vmatrix} x_{1} & a_{2} & a_{3} & a_{4} \\ a_{1}-x_{1} & x_{2}-a_{2} & 0 & 0 \\ a_{1}-x_{1} & 0 & x_{3}-a_{3} & 0 \\ a_{1}-x_{1} & 0 & 0 & x_{4}-a_{4} \end{vmatrix} D=∣
∣x1a1a1a1a2x2a2a2a3a3x3a3a4a4a4x4∣
∣=∣
∣x1a1−x1a1−x1a1−x1a2x2−a200a30x3−a