HyDE(Hypothetical Document Embeddings):探索假设性文档嵌入在AI检索中的应用

随着人工智能技术的不断发展,信息检索领域也在持续演进。其中,一种名为 HyDE(Hypothetical Document Embeddings)的方法崭露头角,为零样本密集检索带来了新的突破。HyDE 通过结合大语言模型的生成能力和对比学习模型的编码能力,在不依赖相关性标签的情况下实现了有效的信息检索。今天我们一起聊一下 HyDE。

一、HyDE的基本概念

HyDE,全称假设性文档嵌入,是一种旨在增强AI系统中零样本密集检索能力的方法(RAG(Retrieval Augmented Generation)及衍生框架:CRAG、Self-RAG与HyDe的深入探讨)。其创新之处在于采用了两步走的策略:首先,利用大型语言模型生成一个假设性文档;其次,使用对比学习模型对这个文档进行编码。这种方法结合了生成式语言模型和密集检索技术的优势,为信息检索带来了新的可能性。

为了更好地理解HyDE,我们需要了解对比学习模型的基本概念。对比学习是一种机器学习技术,其核心在于让模型学会区分相似与不相似的数据点。在文档检索的语境下,对比学习模型能够学习以一种方式表示文档,使得相似的文档在表示空间中彼此接近,而不相似的文档则彼此远离。这种表示方式使得基于相似性的检索变得高效。

二、HyDE 的工作原理

HyDE的工作流程可以细分为以下几个步骤:

  1. 查询输入

    用户向系统提交一个查询或问题,这是整个检索过程的起始点。例如,用户可能询问 “如何提高英语口语能力?”。

  2. 假设文档生成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值