在人工智能领域,随着大型语言模型(LLM)的快速发展,我们见证了问答系统能力的显著提升。然而,面对复杂、多步骤的问题,单一模型往往难以提供准确且高效的答案。为了应对这一挑战,多代理系统(Multi-Agentic Systems)应运而生,它通过分配和委托任务给专业化的模型,并将它们的输出像拼图一样组合起来,从而解决了这一难题。今天我们一起了解一下Multi-Agentic RAG(Retrieval Augmented Generation)系统(面向企业RAG(Retrieval Augmented Generation)系统的多维检索框架),特别是结合Hugging Face Code Agents的实现,以及这一框架如何为智能问答系统开辟新的可能性。
一、Multi-Agentic RAG系统的核心概念
Multi-Agentic RAG系统是多代理系统与检索增强生成(RAG)技术的结合体。