随着人工智能技术的迅猛发展,生成式AI(Generative AI)已成为众多领域关注的焦点。其中,检索增强生成(Retrieval-Augmented Generation,简称RAG)(选择合适自己的检索增强生成(RAG)技术:综合指南)系统作为一种先进的生成式AI架构,正逐渐从概念验证(Proof of Concept,简称POC)阶段迈向实际应用。本文旨在深入探讨RAG系统的构建过程,为初学者提供指导,并为希望将RAG系统从POC推向生产应用的专业人士提供有价值的见解。
一、RAG系统概述
RAG系统(借助 LangGraph、OpenAI 和 Tavily 构建自适应 RAG 系统(含代码))通过结合大型语言模型(Large Language Model,简称LLM)与检索机制,显著提升了生成内容的准确性和相关性。其核心在于利用向量数据库存储和检索大量上下文信息,以辅助生成模型在生成文本时做出更明智的决策。这种方法不仅提高了生成内容的质量,还增强了模型的解释性和可控性。
尽管RAG系统具有诸多优势,但目前大多数应用仍处于POC阶段,仅有少数成功案例成功进入生产环境。这主要归因于构建RAG系统的复杂性,以及将其从实验环境迁移到生产环境所需考虑的各种因素。
二、构建RAG系统的关键组件
1. 聊天模型(Chat Model)
聊天模型是RAG系统的核心组件,负责生成文本。在构建RAG系统时,选择一个合适的聊天模型至关重要。目前,市场上主流的聊天模型主要来自OpenAI、Anthropic、Google等科技巨头。这些模型通常具有较高的性能,并经过大量的训练和优化。
为了保持系统的灵活性和可扩展性,建议采用模块化方式构建聊天模型。这不仅可以方便后续对模型进行替换或升级,还可以轻松融入经过微调(Fine-Tuning)的模型,以适应特定的应用场景。
2. 系统提示(System Prompt)
系统提示(