RAG 系统从 POC 到生产应用:全面解析与实践指南

随着人工智能技术的迅猛发展,生成式AI(Generative AI)已成为众多领域关注的焦点。其中,检索增强生成(Retrieval-Augmented Generation,简称RAG)(选择合适自己的检索增强生成(RAG)技术:综合指南)系统作为一种先进的生成式AI架构,正逐渐从概念验证(Proof of Concept,简称POC)阶段迈向实际应用。本文旨在深入探讨RAG系统的构建过程,为初学者提供指导,并为希望将RAG系统从POC推向生产应用的专业人士提供有价值的见解。

一、RAG系统概述

RAG系统(借助 LangGraph、OpenAI 和 Tavily 构建自适应 RAG 系统(含代码))通过结合大型语言模型(Large Language Model,简称LLM)与检索机制,显著提升了生成内容的准确性和相关性。其核心在于利用向量数据库存储和检索大量上下文信息,以辅助生成模型在生成文本时做出更明智的决策。这种方法不仅提高了生成内容的质量,还增强了模型的解释性和可控性。

尽管RAG系统具有诸多优势,但目前大多数应用仍处于POC阶段,仅有少数成功案例成功进入生产环境。这主要归因于构建RAG系统的复杂性,以及将其从实验环境迁移到生产环境所需考虑的各种因素。

二、构建RAG系统的关键组件

1. 聊天模型(Chat Model)

聊天模型是RAG系统的核心组件,负责生成文本。在构建RAG系统时,选择一个合适的聊天模型至关重要。目前,市场上主流的聊天模型主要来自OpenAI、Anthropic、Google等科技巨头。这些模型通常具有较高的性能,并经过大量的训练和优化。

为了保持系统的灵活性和可扩展性,建议采用模块化方式构建聊天模型。这不仅可以方便后续对模型进行替换或升级,还可以轻松融入经过微调(Fine-Tuning)的模型,以适应特定的应用场景。

2. 系统提示(System Prompt)

系统提示(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值