今天我们一起聊一下如何借助当下最热的开源推理工具 DeepSeek R1 和轻量级本地 AI 模型运行框架 Ollama,构建功能强大的 RAG 系统。
DeepSeek R1:RAG 系统的卓越之选
DeepSeek R1 在 RAG 系统构建领域脱颖而出,有着诸多令人瞩目的优势,堪称开发者的得力助手。与 OpenAI 的 o1 模型相比,DeepSeek R1 在性能表现上毫不逊色,但其成本却大幅降低,仅为 o1 的 5%,这使得更多开发者和企业能够轻松负担,加速了 RAG 技术的广泛应用。
在检索环节,DeepSeek R1 展现出了极高的专注度。它在生成答案时,仅需使用 3 个文档块,就能精准地提取关键信息,避免了无关信息的干扰,显著提升了检索效率和回答的针对性。这一特性使得系统在处理大规模文档时,依然能够快速定位核心内容,为用户提供简洁而有效的答案。
在应对复杂问题或缺乏明确答案的情况时,DeepSeek R1 的严格提示机制发挥了重要作用。它不会像一些模型那样随意 “编造” 答案,而是在不确定时诚实地回复 “我不知道”,这种严谨的态度有效避免了幻觉现象,确保了回答的可靠性和真实性,让用户能够获得可信的信息。
对于许多开发者来说,数据安全和响应速度是至关重要的因素。DeepSeek R1 支持本地执行,无需依赖云端 API,这不仅消除了因网络延迟带来的困扰,还能让用户在本地环境中更加安全地处理敏感数据,无需担忧数据泄露风险,为特定行业和场景的应用提供了坚实的保障。
Ollama:本地模型运行的理想框架
Ollama 作为一款轻量级框架,为在本地运行 AI 模型提供了便捷高效的解决方案,是构建本地 RAG 系统的关键一环。它的出现,让开发者能够摆脱对云端计算资源的过度依赖,在本地设备上轻松部署和运行模型,大大降低了开发和部署成本,同时提升了系统的自主性和隐私性。
使用 Ollama 下载和安装模型非常简单。以运行 DeepSeek R1 模型为例,开发者只需在终端中执行简单的命令即可完成操作。如果希望使用默认的 7B 模型,运行 “ollama run deepseek-r1” 命令即可;若想尝试 1.5B 模型以适配轻量级 RAG 应用场景,运行 “ollama run deepseek-r1:1.5b” 命令就能轻松实现。这种便捷的操作方式,使得即使是技术经验相对较少的开发者&