基于 DeepSeek 从零构建 ReAct AI 智能体(文末含代码)

AI 智能体(探索 Hugging Face's Smolagents:简化Agent开发的新利器(含代码))在处理复杂任务和多步推理问题上发挥着关键作用。其中,ReAct AI 智能体通过将逻辑推理与动态行动执行相结合,有效解决了传统 AI 系统在面对复杂问题时的困境。本文将深入探讨如何基于 DeepSeek 模型从零构建 ReAct AI 智能体,重点关注在不借助框架的情况下,如何实现记忆管理和工具运用。

一、ReAct AI 智能体概述

传统 AI 系统在处理简单任务时表现出色,它按照预定义逻辑处理输入、分析数据并产生响应。然而,在面对复杂、多步且需要持续调整和外部交互的问题时,传统方法就显得力不从心。例如,回答 “2024 年国际足联金球奖得主出生城市的天气如何” 这类问题,涉及到确定得主、找到其出生地以及查询该地天气等多个步骤,传统 AI 系统难以应对。

ReAct AI 智能体则通过引入 “思考→行动→观察” 的循环模式,有效解决了上述问题。该概念在 2022 年的论文 “ReAct: Synergizing Reasoning and Acting in Language Models” 中被提出。在这个循环中,智能体首先对输入进行分析思考,确定所需采取的行动,然后执行该行动并观察结果,再根据观察结果进一步调整思考和行动,不断迭代直至得出最终答案。这种模式使智能体能够根据实时反馈灵活调整策略,更好地适应复杂多变的任务需求。

二、DeepSeek 模型介绍

DeepSeek (深度解析 DeepSeek R1:强化学习与知识蒸馏的协同力量)在近期因提供的大语言模型(LLMs)而备受关注。它具有性能出色、价格亲民、开源以及采用创新训练方法等优点。目前,DeepSeek 平台提供了两种模型选项:DeepSeek-Chat 和 DeepSeek-Reasoner。

DeepSeek-Chat 基于 DeepSeek-V3 模型,是一款通用型模型,可用于多种任务&

### DeepSeek 的搭配使用方法与兼容性 DeepSeek 是一款先进的语义搜索引擎,旨在帮助用户更高效地获取所需信息。为了确保最佳性能,在不同环境下的配置和与其他工具的集成至关重要。 #### 一、安装与基本设置 对于大多数操作系统而言,推荐通过官方提供的 Python 软件包来部署 DeepSeek[^1]。这不仅简化了初始安装过程,还便于后续更新维护工作。具体命令如下: ```bash pip install deepseek ``` #### 二、API 集成方式 支持 RESTful API 接口调用形式,允许开发者轻松将其功能嵌入到现有应用程序中去。以下是发起 HTTP 请求的一个简单例子,用于查询特定主题的相关资料[^2]: ```python import requests url = "http://api.deepseek.com/v1/search" params = { 'query': '人工智能', 'size': 5, } response = requests.get(url, params=params) print(response.json()) ``` #### 三、数据源连接选项 能够对接多种类型的数据库作为索引来源,包括但不限于 MySQL、PostgreSQL 和 MongoDB 等关系型/非关系型数据库系统。此外,也提供了针对文件系统的适配器,方便处理本地文档集合[^3]。 #### 四、前端框架配合指南 当考虑用户体验优化时,可以借助 Vue.js 或 React 这样的现代 JavaScript 库构建交互界面,并利用 WebSocket 实现即时通讯特性,从而增强实时反馈效果[^4]。 #### 五、跨平台运行能力 经过严格测试验证,确认可以在 Linux、macOS 及 Windows 上稳定运作;同时也适用于 Docker 容器化部署场景,进一步提高了灵活性和可移植性[^5]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值