在由人工智能驱动的数据理解时代,传统的信息检索方法已逐渐难以满足需求。大语言模型(LLMs)与像Neo4j这样的图数据库相结合,开创了一种极具吸引力的新模式:图检索增强生成(图RAG)。本文将深入探讨如何借助大语言模型合成知识图谱,并将其应用于图RAG工作流程,尤其是在复杂的分析领域。
为何将知识图谱与大语言模型相结合?
知识图谱围绕实体及其关系提供结构化的上下文信息,能呈现出丰富且相互关联的数据视图。例如,在金融领域,它可以清晰地展示企业之间的股权关系、高管的任职情况等;在医疗领域,能呈现疾病、症状、药物之间的复杂联系。通过知识图谱,原本分散的数据变得有序且可理解,人们可以从宏观和微观层面洞察数据间的内在联系。
大语言模型则擅长解读和生成非结构化文本,能够从杂乱的数据源中提取有价值的信息。以一篇医学研究论文为例,大语言模型可以快速总结核心观点、提取关键研究成果和涉及的医学概念。
将两者结合,能让大语言模型的输出建立在经过验证的知识基础之上,实现可解释的人工智能,从而提升人们对模型输出结果的信任度和实用性。无论是金融、医疗、法律还是物流等行业,这种结合方式都有助于加深对数据的理解并发现新的知识。在金融风险评估中,大语言模型利用知识图谱中的企业关联信息,更准确地预测企业的信用风险,并且能够清晰地解释风险评估的依据。
利用大语言模型创建知识图谱的一般方法
1. 摄取非结构化数据
首先需要收集原始文本数据,如报告、笔录、文章或日志等。这些数据是后续处理的原材料。以法律领域为例,警方的调查笔录、法庭庭审记录等都包含着丰富的信息,但这些信息通常是杂乱无章的。在医疗领域,病历、医学研究文献等非结构化文本也是知识图谱构建的重要数据来源。这些原始数据中蕴含着大量潜在的知识,等待被挖掘和整理。
2. 使用大语言模型智能体进行提取
借助基于智能体的架构(如LangChain或自定义工具)来执行以下关键任务:
- 内容摘要
:对输入的文本内容进行总结,压缩上下文信息。在处理长篇的新闻报道时,大语言模型智能体可以快速提炼出关键事件、涉及的主要人物和核心观点,去除冗余信息,为后续处理减轻负担。
- 命名实体提取
:识别文本中的命名实体,包括人物、组织、地点等。在一篇关于企业并购的新闻稿中,准确提取出收购方、被收购方以及相关的金融机构等实体,是构建知识图谱的基础步骤。
- 关系和角色识别
:确定文本内容中实体之间的关系和各自扮演的角色。例如在一篇科技报道中,识别出某公司是某项技术的研发者,另一家公司是该技术的应用推广者,明确它们之间的合作关系。
- 生成主谓宾三元组
:将提取的信息转化为主谓宾三元组的形式来表示语义。比如“苹果公司 - 生产 - iPhone”,这种三元组结构是知识图谱中知识表示的基本单元,能够清晰地描述实体之间的关系。
3. 转换为图模式
根据有意义的模式对提取的三元组进行结构化处理:
- 定义节点类型和属性
:明确节点的类型及其相关属性。例如,将“人物”定义为一种节点类型,并为其添加姓名、职业、联系方式等属性;对于“公司”节点类型,可以设置公司名称、行业分类、注册地址等属性。
- 定义边类型以表示关系
:确定用于表示实体之间关系的边类型。如“工作于”表示人物与公司之间的雇佣关系;“参与”表示人物与某个事件之间的关联;“供应”表示企业之间的业务往来关系。合理定义边类型能够准确反映知识图谱中实体间的各种联系。
4. 摄取到Neo4j
使用Cypher查询或API将节点和关系插入到Neo4j数据库中。为了提高效率,可以自动化批量摄取数据。例如,在处理大量的电商交易数据时,通过编写脚本利用Cypher语句进行批量插入,将顾客、商品、订单等实体及其关系快速导入Neo4j数据库。这样可以避免逐条插入数据的繁琐操作,大大节省时间和资源,确保知识图谱能够快速构建并投入使用。
5. 使用图RAG进行查询
将基于图的检索与大语言模型的能力相结合:
- 搜索图路径构建上下文
:通过在知识图谱中搜索特定的图路径,获取与查询相关的上下文信息。在查询某一疾病的治疗方案时,搜索与该疾病相关的药物、医疗手段以及相关的研究案例等信息,构建丰富的上下文。
- 使用增强的大语言模型提示
:利用知识图谱中的数据对大语言模型的提示进行增强。例如,在回答关于某一历史事件的问题时,将知识图谱中该事件的时间、地点、人物关系等信息融入提示中,使大语言模型能够生成更准确、更详细的回答。
- 基于结构化证据返回答案
:确保返回的答案有知识图谱中的结构化证据支持,提高答案的可信度和可解释性。当被问及某公司的财务状况时,不仅能得到财务数据的回答,还能展示这些数据在知识图谱中的来源和关联信息,让用户清楚了解答案的依据。
在执法场景中的应用实例
项目的GitHub地址为:https://github.com/sandeepvsk10/Neo4j-Knowledge-Graph-Synthesis-RAG-App-for-Law-Enforcement-of-Organized-Criminal-Network。
在该项目中,大语言模型智能体对笔录进行处理,总结内容并提取关键实体,如人物、组织和事件等。这使得原本冗长且包含大量噪音的笔录数据变得有条理。例如,在处理涉及多个犯罪团伙的调查笔录时,大语言模型智能体能够快速识别出各个团伙的成员、头目以及他们之间的层级关系和重要的犯罪事件。
生成的三元组被映射到Neo4j模式中,明确建模了诸如隶属关系、通信关系等。通过这种方式,构建出了一个反映犯罪网络结构的知识图谱。执法人员可以直观地看到犯罪团伙成员之间的联系,以及他们与各种犯罪活动的关联。
图RAG管道允许对知识图谱进行交互式查询。调查团队可以提出针对性的问题,例如“某个嫌疑人与哪些组织有联系?”“最近发生的一系列犯罪事件之间是否存在关联?”系统会根据知识图谱中的信息检索并返回具有上下文的答案,为执法工作提供有力的支持。虽然这个例子是特定领域的,但相同的原理可以推广到其他用例中。
所使用的技术
- Neo4j Desktop
:用于图存储和查询,它提供了可视化检查实体网络的功能。通过Neo4j Desktop的图形界面,用户可以直观地查看知识图谱中的节点和边,观察实体之间的关系,快速发现数据中的模式和异常。例如,在分析社交网络数据时,可以直接看到用户之间的好友关系、群组关系等,便于进行社交网络分析。
- LangChain + OpenAI/Gemini APIs
:用于大语言模型智能体的工作流程,确保处理过程的灵活性和可扩展性。LangChain提供了一系列工具和接口,方便与不同的大语言模型进行集成,并且可以轻松地扩展功能。通过调用OpenAI或Gemini的API,能够利用这些先进的大语言模型进行文本处理和知识提取。例如,在构建智能客服系统时,可以利用LangChain集成OpenAI的GPT模型,快速实现对用户问题的理解和回答。
- Python
:用于编排整个管道并管理模块化功能。Python丰富的库和框架使得它成为构建复杂数据处理系统的理想选择。通过Python,可以编写代码实现数据的摄取、处理、存储以及与其他技术的交互。例如,使用Python的pandas库处理和清洗数据,利用Neo4j的Python驱动程序与Neo4j数据库进行交互。
基于图的RAG与大语言模型的结合不仅仅是一种技术趋势,更是可解释的智能系统的未来发展方向。通过使用大语言模型智能体从原始文本构建知识图谱,并利用Neo4j的强大功能,我们能够从非结构化数据中获得更深入、结构化的见解。