利用大语言模型在Neo4j中构建用于图RAG应用的知识图谱

在由人工智能驱动的数据理解时代,传统的信息检索方法已逐渐难以满足需求。大语言模型(LLMs)与像Neo4j这样的图数据库相结合,开创了一种极具吸引力的新模式:图检索增强生成(图RAG)。本文将深入探讨如何借助大语言模型合成知识图谱,并将其应用于图RAG工作流程,尤其是在复杂的分析领域。

为何将知识图谱与大语言模型相结合?

知识图谱围绕实体及其关系提供结构化的上下文信息,能呈现出丰富且相互关联的数据视图。例如,在金融领域,它可以清晰地展示企业之间的股权关系、高管的任职情况等;在医疗领域,能呈现疾病、症状、药物之间的复杂联系。通过知识图谱,原本分散的数据变得有序且可理解,人们可以从宏观和微观层面洞察数据间的内在联系。

大语言模型则擅长解读和生成非结构化文本,能够从杂乱的数据源中提取有价值的信息。以一篇医学研究论文为例,大语言模型可以快速总结核心观点、提取关键研究成果和涉及的医学概念。

将两者结合,能让大语言模型的输出建立在经过验证的知识基础之上,实现可解释的人工智能,从而提升人们对模型输出结果的信任度和实用性。无论是金融、医疗、法律还是物流等行业,这种结合方式都有助于加深对数据的理解并发现新的知识。在金融风险评估中,大语言模型利用知识图谱中的企业关联信息,更准确地预测企业的信用风险,并且能够清晰地解释风险评估的依据。

利用大语言模型创建知识图谱的一般方法

1. 摄取非结构化数据

首先需要收集原始文本数据,如报告、笔录、文章或日志等。这些数据是后续处理的原材料。以法律领域为例,警方的调查笔录、法庭庭审记录等都包含着丰富的信息,但这些信息通常是杂乱无章的。在医疗领域,病历、医学研究文献等非结构化文本也是知识图谱构建的重要数据来源。这些原始数据中蕴含着大量潜在的知识,等待被挖掘和整理。

2. 使用大语言模型智能体进行提取

借助基于智能体的架构(如LangChain或自定义工具)来执行以下关键任务:

  • 内容摘要

    :对输入的文本内容进行总结,压缩上下文信息。在处理长篇的新闻报道时,大语言模型智能体可以快速提炼出关键事件、涉及的主要人物和核心观点,去除冗余信息,为后续处理减轻负担。

  • 命名实体提取

    :识别文本中的命名实体,包括人物、组织、地点等。在一篇关于企业并购的新闻稿中,准确提取出收购方、被收购方以及相关的金融机构等实体,是构建知识图谱的基础步骤。

  • 关系和角色识别

    :确定文本内容中实体之间的关系和各自扮演的角色。例如在一篇科技报道中,识别出某公司是某项技术的研发者,另一家公司是该技术的应用推广者,明确它们之间的合作关系。

  • 生成主谓宾三元组

    :将提取的信息转化为主谓宾三元组的形式来表示语义。比如“苹果公司 - 生产 - iPhone”,这种三元组结构是知识图谱中知识表示的基本单元,能够清晰地描述实体之间的关系。

3. 转换为图模式

根据有意义的模式对提取的三元组进行结构化处理:

  • 定义节点类型和属性

    :明确节点的类型及其相关属性。例如,将“人物”定义为一种节点类型,并为其添加姓名、职业、联系方式等属性;对于“公司”节点类型,可以设置公司名称、行业分类、注册地址等属性。

  • 定义边类型以表示关系

    :确定用于表示实体之间关系的边类型。如“工作于”表示人物与公司之间的雇佣关系;“参与”表示人物与某个事件之间的关联;“供应”表示企业之间的业务往来关系。合理定义边类型能够准确反映知识图谱中实体间的各种联系。

4. 摄取到Neo4j

使用Cypher查询或API将节点和关系插入到Neo4j数据库中。为了提高效率,可以自动化批量摄取数据。例如,在处理大量的电商交易数据时,通过编写脚本利用Cypher语句进行批量插入,将顾客、商品、订单等实体及其关系快速导入Neo4j数据库。这样可以避免逐条插入数据的繁琐操作,大大节省时间和资源,确保知识图谱能够快速构建并投入使用。

5. 使用图RAG进行查询

将基于图的检索与大语言模型的能力相结合:

  • 搜索图路径构建上下文

    :通过在知识图谱中搜索特定的图路径,获取与查询相关的上下文信息。在查询某一疾病的治疗方案时,搜索与该疾病相关的药物、医疗手段以及相关的研究案例等信息,构建丰富的上下文。

  • 使用增强的大语言模型提示

    :利用知识图谱中的数据对大语言模型的提示进行增强。例如,在回答关于某一历史事件的问题时,将知识图谱中该事件的时间、地点、人物关系等信息融入提示中,使大语言模型能够生成更准确、更详细的回答。

  • 基于结构化证据返回答案

    :确保返回的答案有知识图谱中的结构化证据支持,提高答案的可信度和可解释性。当被问及某公司的财务状况时,不仅能得到财务数据的回答,还能展示这些数据在知识图谱中的来源和关联信息,让用户清楚了解答案的依据。

在执法场景中的应用实例

项目的GitHub地址为:https://github.com/sandeepvsk10/Neo4j-Knowledge-Graph-Synthesis-RAG-App-for-Law-Enforcement-of-Organized-Criminal-Network。

在该项目中,大语言模型智能体对笔录进行处理,总结内容并提取关键实体,如人物、组织和事件等。这使得原本冗长且包含大量噪音的笔录数据变得有条理。例如,在处理涉及多个犯罪团伙的调查笔录时,大语言模型智能体能够快速识别出各个团伙的成员、头目以及他们之间的层级关系和重要的犯罪事件。

生成的三元组被映射到Neo4j模式中,明确建模了诸如隶属关系、通信关系等。通过这种方式,构建出了一个反映犯罪网络结构的知识图谱。执法人员可以直观地看到犯罪团伙成员之间的联系,以及他们与各种犯罪活动的关联。

图RAG管道允许对知识图谱进行交互式查询。调查团队可以提出针对性的问题,例如“某个嫌疑人与哪些组织有联系?”“最近发生的一系列犯罪事件之间是否存在关联?”系统会根据知识图谱中的信息检索并返回具有上下文的答案,为执法工作提供有力的支持。虽然这个例子是特定领域的,但相同的原理可以推广到其他用例中。

所使用的技术

  • Neo4j Desktop

    :用于图存储和查询,它提供了可视化检查实体网络的功能。通过Neo4j Desktop的图形界面,用户可以直观地查看知识图谱中的节点和边,观察实体之间的关系,快速发现数据中的模式和异常。例如,在分析社交网络数据时,可以直接看到用户之间的好友关系、群组关系等,便于进行社交网络分析。

  • LangChain + OpenAI/Gemini APIs

    :用于大语言模型智能体的工作流程,确保处理过程的灵活性和可扩展性。LangChain提供了一系列工具和接口,方便与不同的大语言模型进行集成,并且可以轻松地扩展功能。通过调用OpenAI或Gemini的API,能够利用这些先进的大语言模型进行文本处理和知识提取。例如,在构建智能客服系统时,可以利用LangChain集成OpenAI的GPT模型,快速实现对用户问题的理解和回答。

  • Python

    :用于编排整个管道并管理模块化功能。Python丰富的库和框架使得它成为构建复杂数据处理系统的理想选择。通过Python,可以编写代码实现数据的摄取、处理、存储以及与其他技术的交互。例如,使用Python的pandas库处理和清洗数据,利用Neo4j的Python驱动程序与Neo4j数据库进行交互。

基于图的RAG与大语言模型的结合不仅仅是一种技术趋势,更是可解释的智能系统的未来发展方向。通过使用大语言模型智能体从原始文本构建知识图谱,并利用Neo4j的强大功能,我们能够从非结构化数据中获得更深入、结构化的见解。

### RAG 模型中的知识图谱构建方法 #### 1. 数据收集与预处理 为了在RAG模型中有效集成知识图谱,数据源的选择至关重要。通常会从多个渠道获取结构化和半结构化的数据集,如维基百科、学术论文库和其他权威资源[^3]。 #### 2. 实体识别与链接 通过自然语言处理工具和技术来自动提取文档内的实体,并将其映射到已有的本体或创建新的概念节点。这一步骤对于建立高质量的知识网络非常关键,因为它直接影响后续推理能力的准确性[^4]。 #### 3. 关系抽取 采用机器学习算法或者规则引擎来进行关系发现工作,在不同对象之间定义语义关联。此过程不仅限于简单的属性描述,还包括更复杂的因果逻辑链条等高级模式的学习[^1]。 #### 4. 形存储优化 考虑到大规模实时查询的需求,选择合适的形数据库作为底层支撑平台显得尤为重要。Neo4j 和 Amazon Neptune 是两个常见的选项,它们提供了良好的扩展性和高效的路径查找功能。 #### 5. 集成至RAG框架内 最后也是最关键的一环就是让上述构建好的KG能够无缝接入现有的RAG架构当中去。具体做法可能涉及到API接口开发以及内部缓存机制的设计等方面的工作[^2]。 ```python from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq") retriever = RagRetriever.from_pretrained( "facebook/rag-token-nq", index_name="exact", use_dummy_dataset=True ) model = RagSequenceForGeneration.from_pretrained("facebook/rag-token-nq", retriever=retriever) def integrate_kg_into_rag(knowledge_graph): """ Integrates a pre-built knowledge graph into the existing RAG model. Args: knowledge_graph (dict): A dictionary representing nodes and edges of the KG. Returns: None """ pass # Implementation details depend on specific requirements integrate_kg_into_rag(my_custom_knowledge_graph) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值